音频smmu问题之smmu学习

2024-02-24 18:44
文章标签 音频 问题 学习 smmu

本文主要是介绍音频smmu问题之smmu学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、音频smmu 内存访问问题

在工作中,遇到一个smmu问题,主要log信息如下:

arm-smmu 15000000.apps-smmu: Unhandled arm-smmu context fault from soc:spf_core_platform:qcom,msm-audio-ion!
arm-smmu 15000000.apps-smmu: FAR = 0x000000001fff8000
arm-smmu 15000000.apps-smmu: PAR = 0x0000000000000000
arm-smmu 15000000.apps-smmu: FSR = 0x40000408 [PF R SS]
arm-smmu 15000000.apps-smmu: FSYNR0 = 0x320002
arm-smmu 15000000.apps-smmu: FSYNR1 = 0xe00e
arm-smmu 15000000.apps-smmu: context bank# = 0x30
arm-smmu 15000000.apps-smmu: TTBR0 = 0x0000000000000000
arm-smmu 15000000.apps-smmu: TTBR1 = 0x0000000000000000
arm-smmu 15000000.apps-smmu: SCTLR = 0x0a5f00e7 ACTLR = 0x00000003
arm-smmu 15000000.apps-smmu: CBAR = 0x0001f300
arm-smmu 15000000.apps-smmu: MAIR0 = 0xf404ff44 MAIR1 = 0x0000efe4
arm-smmu 15000000.apps-smmu: SID = 0x1001
arm-smmu 15000000.apps-smmu: Client info: BID=0x7, PID=0x0, MId=0xe
arm-smmu 15000000.apps-smmu: soft iova-to-phys=0x00000000bc299000
arm-smmu 15000000.apps-smmu: hard iova-to-phys(ATOS)=0x00000000bc299000

1、从堆栈来看大致可以了解到, 这是由于SMMU监测到某个模块非法的访问DMA地址后, 引起了内核崩溃. 那么, 为何有这个错误SMMU访问错误? 这个错误又是哪个模块导致的? 是在什么情况下引起的SMMU内存错误了? 这不得不从SMMU本身说起.

继续来看下问题的日志. 堆栈的前面一部分是有关SMMU的状态寄存器:
FAR(Fault Address Register): 表示发生错误的IO虚拟地址
PAR(Physical Address Register): 发生错误时查找到的物理地址, 这里是全0, 说明相应的IOVA地址没有映射
FSR(Fault Status Register): 表示SMMU错误的类型(转换/权限等), 这里的值0x40000408 [PF R SS], 说明是一个读操作时引起的页表访问错误
TTBRm(Translation Table Base Address):
TTBR0: 保存Translation Table0的基地址
TTBR1: 保存Translation Table1的基地址
SID(Stream ID): SID是对应设备使用SMMU映射内存时的标识

重点看下如下两行日志, 我们可以知道发生内存映射异常的IOVA地址是0x1fff8000, 对应的SID是0x1001

arm-smmu 15000000.apps-smmu: FAR = 0x000000001fff8000
arm-smmu 15000000.apps-smmu: SID = 0x1001

SID一般在设备树DTS的配置中指定的或者可以在modem代码中查看

路径:/trustzone_images/core/settings/kernel/iortlib/config/xxx/xxx.c

2、理清楚这些SMMU的日志只是第一步, 但是对于为何会发生SMMU访问异常还是毫无头绪. 这个只能通过阅读驱动源代码弄清楚代码流程才能一步步揭开迷雾了.

网卡需要传数据时, 获取到当前的缓冲区对应的DMA内存地址(IOVA)后, 通过SMMU向对应的RAM地址传输数据
发送完成后, 通过中断告知驱动有数据需要接收
CPU接收到中断后, 驱动会把DMA的映射解除, 数据交由CPU处理; 接着驱动把对应的数据发送到协议栈继续处理

那么, 问题来了, SMMU是何时收到DMA访问异常错误的了? 是在第三个步骤, 驱动解除DMA地址映射后, 有地方再次尝试使用该DMA地址导致的吗? 从驱动的逻辑来看, 每次传送完成, DMA地址与RAM地址解除映射后, 没有地方会再次尝试获取该DMA地址了(对应buffer的DMA地址已经置空). 退一步说, 如果是驱动使用的时候发生的问题, 那么异常的堆栈应该会打印出来, 但是现在只有SMMU相关的日志.

所以, 问题的源头只能是在网卡通过SMMU往对应的DMA地址发送数据的时候, 就是说如果网卡给DMA传输数据的大小超过了预分配的buffer的大小的话, SMMU会发现对应的DMA地址没有映射到物理地址, 从而报错. 解决问题的办法也很简单, 只需要把buffer大小由原来的1538修改为2048(2kb)就可以了:

从高通给的一些问题案例来说, 一般SMMU都是由于需要传输的数据大小与实际的buf大小不一致导致的. 总的说来, SMMU的问题看起来十分棘手, 但只要把基本的概念与原理弄清楚, 把代码流程梳理完整, 解决这类问题并不是件十分困难的事情.

二、smmu 相关知识学习

1、概述

简单来说, SMMU(System Memory Management Unit)是ARM为外设访问系统RAM提供了一种类似于MMU的虚拟内存访问机制, 外设可以通过DMA直接访问RAM, 而无需CPU的干预. 如此, 外设可以通过一个虚拟的地址即可访问物理地址(可以不连续), 做到了不同外设之间IO地址空间的彼此独立与隔离. 因此, SMMU也通常被称为IOMMU(Input/Output MMU).

下图是从ARM SMMU Spec手册里的一张SMMU简图: SMMU为设备与RAM之间构建了一个设备虚拟地址(IOVA)与物理地址之间的映射关系, 每次执行DMA数据传输的时候, 都要通过SMMU将IOVA地址翻译成对应的物理地址.
在这里插入图片描述
那么对于设备驱动来说, 如何使用SMMU了? 不妨来看下SMMU相关的API.

arm_iommu_create_mapping: 配置设备所要使用的VA(Virtual Address, 虚拟地址)的范围
arm_iommu_attach_device: 将分配好的VA地址范围与设备绑定, 并开启SMMU地址转换
dma_map_single/dma_unmap_single: 分配/去除某个DMA地址, 这种方式是异步的, 常用于一次性传输的场景(传输完成后DMA的映射即解除了)
dma_alloc_coherent/dma_free_coherent: 一致性(consistent), 同步(synchronous)的DMA内存分配方法, 确保CPU与设备的数据始终是同步的, 一般用于需要常驻内存的一些数据
这里不对IOMMU的代码做深入分析了. 有关IOMMU相关的流程可以参考内核代码:

kernel/drivers/iommu: SMMU驱动, 用于配置SMMU, 为设备驱动提供接口
kernel/arch/arm64/mm: 与平台相关的SMMU的页表分配的实现

2、smmu寄存器

FAR(Fault Address Register): 表示发生错误的IO虚拟地址
PAR(Physical Address Register): 发生错误时查找到的物理地址, 这里是全0, 说明相应的IOVA地址没有映射
FSR(Fault Status Register): 表示SMMU错误的类型(转换/权限等), 这里的值0x40000408 [PF R SS], 说明是一个读操作时引起的页表访问错误
TTBRm(Translation Table Base Address):
TTBR0: 保存Translation Table0的基地址
TTBR1: 保存Translation Table1的基地址
SID(Stream ID): SID是对应设备使用SMMU映射内存时的标识

参考
https://mp.weixin.qq.com/s/IsNUsalsE2sZOd2AJlXtjQ?poc_token=HLeZ2WWjwsFSMFprJ21xG6cSnuJWTNdnE0gRy9h5
https://zhuanlan.zhihu.com/p/662140784
https://zhuanlan.zhihu.com/p/650483261

这篇关于音频smmu问题之smmu学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/743017

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k