NumPy之:ndarray多维数组操作

2024-02-24 16:08

本文主要是介绍NumPy之:ndarray多维数组操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 简介
  • 创建ndarray
  • ndarray的属性
  • ndarray中元素的类型转换
  • ndarray的数学运算
  • index和切片
    • 基本使用
    • index with slice
    • boolean index
    • Fancy indexing
  • 数组变换

简介

NumPy一个非常重要的作用就是可以进行多维数组的操作,多维数组对象也叫做ndarray。我们可以在ndarray的基础上进行一系列复杂的数学运算。

本文将会介绍一些基本常见的ndarray操作,大家可以在数据分析中使用。

创建ndarray

创建ndarray有很多种方法,我们可以使用np.random来随机生成数据:

import numpy as np
# Generate some random data
data = np.random.randn(2, 3)
data
array([[ 0.0929,  0.2817,  0.769 ],[ 1.2464,  1.0072, -1.2962]])

除了随机创建之外,还可以从list中创建:

data1 = [6, 7.5, 8, 0, 1]
arr1 = np.array(data1)
array([6. , 7.5, 8. , 0. , 1. ])

从list中创建多维数组:

data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
arr2 = np.array(data2)
array([[1, 2, 3, 4],[5, 6, 7, 8]])

使用np.zeros创建初始值为0的数组:

np.zeros(10)
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

创建2维数组:

np.zeros((3, 6))
array([[0., 0., 0., 0., 0., 0.],[0., 0., 0., 0., 0., 0.],[0., 0., 0., 0., 0., 0.]])

使用empty创建3维数组:

np.empty((2, 3, 2))
array([[[0., 0.],[0., 0.],[0., 0.]],[[0., 0.],[0., 0.],[0., 0.]]])

注意,这里我们看到empty创建的数组值为0,其实并不是一定的,empty会从内存中随机挑选空间来返回,并不能保证这些空间中没有值。所以我们在使用empty创建数组之后,在使用之前,还要记得初始化他们。

使用arange创建范围类的数组:

np.arange(15)
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

指定数组中元素的dtype:

arr1 = np.array([1, 2, 3], dtype=np.float64)
arr2 = np.array([1, 2, 3], dtype=np.int32)

ndarray的属性

可以通过data.shape获得数组的形状。

data.shape
(2, 3)

通过ndim获取维数信息:

arr2.ndim
2

可以通过data.dtype获得具体的数据类型。

data.dtype
dtype('float64')

ndarray中元素的类型转换

在创建好一个类型的ndarray之后,还可以对其进行转换:

arr = np.array([1, 2, 3, 4, 5])
arr.dtype
dtype('int64')float_arr = arr.astype(np.float64)
float_arr.dtype
dtype('float64')

上面我们使用astype将int64类型的ndarray转换成了float64类型的。

如果转换类型的范围不匹配,则会自动进行截断操作:

arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])
arr.astype(np.int32)array([ 3, -1, -2,  0, 12, 10], dtype=int32)

注意,这里是把小数截断,并没有向上或者向下取整。

ndarray的数学运算

数组可以和常量进行运算,也可以和数组进行运算:

arr = np.array([[1., 2., 3.], [4., 5., 6.]])arr * arrarray([[ 1.,  4.,  9.],[16., 25., 36.]])arr + 10array([[11., 12., 13.],[14., 15., 16.]])arr - arrarray([[0., 0., 0.],[0., 0., 0.]])1 / arrarray([[1.    , 0.5   , 0.3333],[0.25  , 0.2   , 0.1667]])arr ** 0.5array([[1.    , 1.4142, 1.7321],[2.    , 2.2361, 2.4495]])

数组之间还可以进行比较,比较的是数组中每个元素的大小:

arr2 = np.array([[0., 4., 1.], [7., 2., 12.]])arr2 > arrarray([[False,  True, False],[ True, False,  True]])

index和切片

基本使用

先看下index和切片的基本使用,index基本上和普通数组的使用方式是一样的,用来访问数组中某一个元素。

切片要注意的是切片后返回的数组中的元素是原数组中元素的引用,修改切片的数组会影响到原数组。

# 构建一维数组
arr = np.arange(10)array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])# index访问
arr[5]
5# 切片访问
arr[5:8]
array([5, 6, 7])# 切片修改
arr[5:8] = 12
array([ 0,  1,  2,  3,  4, 12, 12, 12,  8,  9])# 切片可以修改原数组的值
arr_slice = arr[5:8]
arr_slice[1] = 12345
arrarray([    0,     1,     2,     3,     4,    12, 12345,    12,     8,9])# 构建二维数组
arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
arr2d[2]array([7, 8, 9])# index 二维数组
arr2d[0][2]
3# index二维数组
arr2d[0, 2]
3# 构建三维数组
arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
arr3darray([[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]]])# index三维数组
arr3d[0]array([[1, 2, 3],[4, 5, 6]])# copy是硬拷贝,和原数组的值相互不影响
old_values = arr3d[0].copy()
arr3d[0] = 42arr3darray([[[42, 42, 42],[42, 42, 42]],[[ 7,  8,  9],[10, 11, 12]]])arr3d[0] = old_values
arr3darray([[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]]])# index 三维数组
arr3d[1, 0]array([7, 8, 9])x = arr3d[1]
xarray([[ 7,  8,  9],[10, 11, 12]])x[0]array([7, 8, 9])

index with slice

slice还可以作为index使用,作为index使用表示的就是一个index范围值。

作为index表示的slice可以有多种形式。

有头有尾的,表示index从1开始到6-1结束:

arr[1:6]
array([ 1,  2,  3,  4, 64])

无头有尾的,表示index从0开始,到尾-1结束:

arr2d[:2]
array([[1, 2, 3],[4, 5, 6]])

有头无尾的,表示从头开始,到所有的数据结束:

arr2d[:2, 1:]
array([[2, 3],[5, 6]])
arr2d[1, :2]
array([4, 5])

boolean index

index还可以使用boolean值,表示是否选择这一个index的数据。

我们先看下怎么构建一个boolean类型的数组:

names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
names == 'Bob'array([ True, False, False,  True, False, False, False])

上面我们通过比较的方式返回了一个只包含True和False的数组。

这个数组可以作为index值来访问数组:

#  构建一个7 * 4 的数组
data = np.random.randn(7, 4)array([[ 0.275 ,  0.2289,  1.3529,  0.8864],[-2.0016, -0.3718,  1.669 , -0.4386],[-0.5397,  0.477 ,  3.2489, -1.0212],[-0.5771,  0.1241,  0.3026,  0.5238],[ 0.0009,  1.3438, -0.7135, -0.8312],[-2.3702, -1.8608, -0.8608,  0.5601],[-1.2659,  0.1198, -1.0635,  0.3329]])# 通过boolean数组来访问:
data[names == 'Bob']
array([[ 0.275 ,  0.2289,  1.3529,  0.8864],[-0.5771,  0.1241,  0.3026,  0.5238]])

在索引行的时候,还可以索引列:

data[names == 'Bob', 3]
array([0.8864, 0.5238])

可以用 ~符号来取反:

data[~(names == 'Bob')]
array([[-2.0016, -0.3718,  1.669 , -0.4386],[-0.5397,  0.477 ,  3.2489, -1.0212],[ 0.0009,  1.3438, -0.7135, -0.8312],[-2.3702, -1.8608, -0.8608,  0.5601],[-1.2659,  0.1198, -1.0635,  0.3329]])

我们可以通过布尔型数组设置值,在实际的项目中非常有用:

data[data < 0] = 0
array([[0.275 , 0.2289, 1.3529, 0.8864],[0.    , 0.    , 1.669 , 0.    ],[0.    , 0.477 , 3.2489, 0.    ],[0.    , 0.1241, 0.3026, 0.5238],[0.0009, 1.3438, 0.    , 0.    ],[0.    , 0.    , 0.    , 0.5601],[0.    , 0.1198, 0.    , 0.3329]])
data[names != 'Joe'] = 7
array([[7.    , 7.    , 7.    , 7.    ],[0.    , 0.    , 1.669 , 0.    ],[7.    , 7.    , 7.    , 7.    ],[7.    , 7.    , 7.    , 7.    ],[7.    , 7.    , 7.    , 7.    ],[0.    , 0.    , 0.    , 0.5601],[0.    , 0.1198, 0.    , 0.3329]])

Fancy indexing

Fancy indexing也叫做花式索引,它是指使用一个整数数组来进行索引。

举个例子,我们先创建一个 8 * 4的数组:

arr = np.empty((8, 4))
for i in range(8):arr[i] = i
arr
array([[0., 0., 0., 0.],[1., 1., 1., 1.],[2., 2., 2., 2.],[3., 3., 3., 3.],[4., 4., 4., 4.],[5., 5., 5., 5.],[6., 6., 6., 6.],[7., 7., 7., 7.]])

然后使用一个整数数组来索引,那么将会以指定的顺序来选择行:

arr[[4, 3, 0, 6]]
array([[4., 4., 4., 4.],[3., 3., 3., 3.],[0., 0., 0., 0.],[6., 6., 6., 6.]])

还可以使用负值来索引:

arr[[-3, -5, -7]]
array([[5., 5., 5., 5.],[3., 3., 3., 3.],[1., 1., 1., 1.]])

花式索引还可以组合来使用:

arr = np.arange(32).reshape((8, 4))
arr
array([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11],[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23],[24, 25, 26, 27],[28, 29, 30, 31]])

上面我们构建了一个8 * 4的数组。

arr[[1, 5, 7, 2], [0, 3, 1, 2]]
array([ 4, 23, 29, 10])

然后取他们的第2列的第一个值,第6列的第三个值等等。最后得到一个1维的数组。

数组变换

我们可以在不同维度的数组之间进行变换,还可以转换数组的轴。

reshape方法可以将数组转换成为任意的形状:

arr = np.arange(15).reshape((3, 5))
arr
array([[ 0,  1,  2,  3,  4],[ 5,  6,  7,  8,  9],[10, 11, 12, 13, 14]])

数组还提供了一个T命令,可以将数组的轴进行对调:

arr.T
array([[ 0,  5, 10],[ 1,  6, 11],[ 2,  7, 12],[ 3,  8, 13],[ 4,  9, 14]])

对于高维数组,可以使用transpose来进行轴的转置:

arr = np.arange(16).reshape((2, 2, 4))
arr
array([[[ 0,  1,  2,  3],[ 4,  5,  6,  7]],[[ 8,  9, 10, 11],[12, 13, 14, 15]]])arr.transpose((1, 0, 2))
array([[[ 0,  1,  2,  3],[ 8,  9, 10, 11]],[[ 4,  5,  6,  7],[12, 13, 14, 15]]])

上面的transpose((1, 0, 2)) 怎么理解呢?

其含义是将x,y轴对调,z轴保持不变。

上面我们通过使用reshape((2, 2, 4))方法创建了一个3维,也就是3个轴的数组。 其shape是 2 * 2 * 4 。

先看下对应关系:

(0,0)-》 [ 0, 1, 2, 3]

(0,1)-》 [ 4, 5, 6, 7]

(1,0)-》 [ 8, 9, 10, 11]

(1,1)-》 [12, 13, 14, 15]

转换之后:

(0,0)-》 [ 0, 1, 2, 3]

(0,1)-》 [ 8, 9, 10, 11]

(1,0)-》[ 4, 5, 6, 7]

(1,1)-》 [12, 13, 14, 15]

于是得到了我们上面的的结果。

多维数组的轴转换可能比较复杂,大家多多理解。

还可以使用 swapaxes 来交换两个轴,上面的例子可以重写为:

arr.swapaxes(0,1)

本文已收录于 http://www.flydean.com/09-python-numpy-ndarray/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

这篇关于NumPy之:ndarray多维数组操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/742635

相关文章

C++一个数组赋值给另一个数组方式

《C++一个数组赋值给另一个数组方式》文章介绍了三种在C++中将一个数组赋值给另一个数组的方法:使用循环逐个元素赋值、使用标准库函数std::copy或std::memcpy以及使用标准库容器,每种方... 目录C++一个数组赋值给另一个数组循环遍历赋值使用标准库中的函数 std::copy 或 std::

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、