NumPy之:ndarray多维数组操作

2024-02-24 16:08

本文主要是介绍NumPy之:ndarray多维数组操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 简介
  • 创建ndarray
  • ndarray的属性
  • ndarray中元素的类型转换
  • ndarray的数学运算
  • index和切片
    • 基本使用
    • index with slice
    • boolean index
    • Fancy indexing
  • 数组变换

简介

NumPy一个非常重要的作用就是可以进行多维数组的操作,多维数组对象也叫做ndarray。我们可以在ndarray的基础上进行一系列复杂的数学运算。

本文将会介绍一些基本常见的ndarray操作,大家可以在数据分析中使用。

创建ndarray

创建ndarray有很多种方法,我们可以使用np.random来随机生成数据:

import numpy as np
# Generate some random data
data = np.random.randn(2, 3)
data
array([[ 0.0929,  0.2817,  0.769 ],[ 1.2464,  1.0072, -1.2962]])

除了随机创建之外,还可以从list中创建:

data1 = [6, 7.5, 8, 0, 1]
arr1 = np.array(data1)
array([6. , 7.5, 8. , 0. , 1. ])

从list中创建多维数组:

data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
arr2 = np.array(data2)
array([[1, 2, 3, 4],[5, 6, 7, 8]])

使用np.zeros创建初始值为0的数组:

np.zeros(10)
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

创建2维数组:

np.zeros((3, 6))
array([[0., 0., 0., 0., 0., 0.],[0., 0., 0., 0., 0., 0.],[0., 0., 0., 0., 0., 0.]])

使用empty创建3维数组:

np.empty((2, 3, 2))
array([[[0., 0.],[0., 0.],[0., 0.]],[[0., 0.],[0., 0.],[0., 0.]]])

注意,这里我们看到empty创建的数组值为0,其实并不是一定的,empty会从内存中随机挑选空间来返回,并不能保证这些空间中没有值。所以我们在使用empty创建数组之后,在使用之前,还要记得初始化他们。

使用arange创建范围类的数组:

np.arange(15)
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

指定数组中元素的dtype:

arr1 = np.array([1, 2, 3], dtype=np.float64)
arr2 = np.array([1, 2, 3], dtype=np.int32)

ndarray的属性

可以通过data.shape获得数组的形状。

data.shape
(2, 3)

通过ndim获取维数信息:

arr2.ndim
2

可以通过data.dtype获得具体的数据类型。

data.dtype
dtype('float64')

ndarray中元素的类型转换

在创建好一个类型的ndarray之后,还可以对其进行转换:

arr = np.array([1, 2, 3, 4, 5])
arr.dtype
dtype('int64')float_arr = arr.astype(np.float64)
float_arr.dtype
dtype('float64')

上面我们使用astype将int64类型的ndarray转换成了float64类型的。

如果转换类型的范围不匹配,则会自动进行截断操作:

arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])
arr.astype(np.int32)array([ 3, -1, -2,  0, 12, 10], dtype=int32)

注意,这里是把小数截断,并没有向上或者向下取整。

ndarray的数学运算

数组可以和常量进行运算,也可以和数组进行运算:

arr = np.array([[1., 2., 3.], [4., 5., 6.]])arr * arrarray([[ 1.,  4.,  9.],[16., 25., 36.]])arr + 10array([[11., 12., 13.],[14., 15., 16.]])arr - arrarray([[0., 0., 0.],[0., 0., 0.]])1 / arrarray([[1.    , 0.5   , 0.3333],[0.25  , 0.2   , 0.1667]])arr ** 0.5array([[1.    , 1.4142, 1.7321],[2.    , 2.2361, 2.4495]])

数组之间还可以进行比较,比较的是数组中每个元素的大小:

arr2 = np.array([[0., 4., 1.], [7., 2., 12.]])arr2 > arrarray([[False,  True, False],[ True, False,  True]])

index和切片

基本使用

先看下index和切片的基本使用,index基本上和普通数组的使用方式是一样的,用来访问数组中某一个元素。

切片要注意的是切片后返回的数组中的元素是原数组中元素的引用,修改切片的数组会影响到原数组。

# 构建一维数组
arr = np.arange(10)array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])# index访问
arr[5]
5# 切片访问
arr[5:8]
array([5, 6, 7])# 切片修改
arr[5:8] = 12
array([ 0,  1,  2,  3,  4, 12, 12, 12,  8,  9])# 切片可以修改原数组的值
arr_slice = arr[5:8]
arr_slice[1] = 12345
arrarray([    0,     1,     2,     3,     4,    12, 12345,    12,     8,9])# 构建二维数组
arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
arr2d[2]array([7, 8, 9])# index 二维数组
arr2d[0][2]
3# index二维数组
arr2d[0, 2]
3# 构建三维数组
arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
arr3darray([[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]]])# index三维数组
arr3d[0]array([[1, 2, 3],[4, 5, 6]])# copy是硬拷贝,和原数组的值相互不影响
old_values = arr3d[0].copy()
arr3d[0] = 42arr3darray([[[42, 42, 42],[42, 42, 42]],[[ 7,  8,  9],[10, 11, 12]]])arr3d[0] = old_values
arr3darray([[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]]])# index 三维数组
arr3d[1, 0]array([7, 8, 9])x = arr3d[1]
xarray([[ 7,  8,  9],[10, 11, 12]])x[0]array([7, 8, 9])

index with slice

slice还可以作为index使用,作为index使用表示的就是一个index范围值。

作为index表示的slice可以有多种形式。

有头有尾的,表示index从1开始到6-1结束:

arr[1:6]
array([ 1,  2,  3,  4, 64])

无头有尾的,表示index从0开始,到尾-1结束:

arr2d[:2]
array([[1, 2, 3],[4, 5, 6]])

有头无尾的,表示从头开始,到所有的数据结束:

arr2d[:2, 1:]
array([[2, 3],[5, 6]])
arr2d[1, :2]
array([4, 5])

boolean index

index还可以使用boolean值,表示是否选择这一个index的数据。

我们先看下怎么构建一个boolean类型的数组:

names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
names == 'Bob'array([ True, False, False,  True, False, False, False])

上面我们通过比较的方式返回了一个只包含True和False的数组。

这个数组可以作为index值来访问数组:

#  构建一个7 * 4 的数组
data = np.random.randn(7, 4)array([[ 0.275 ,  0.2289,  1.3529,  0.8864],[-2.0016, -0.3718,  1.669 , -0.4386],[-0.5397,  0.477 ,  3.2489, -1.0212],[-0.5771,  0.1241,  0.3026,  0.5238],[ 0.0009,  1.3438, -0.7135, -0.8312],[-2.3702, -1.8608, -0.8608,  0.5601],[-1.2659,  0.1198, -1.0635,  0.3329]])# 通过boolean数组来访问:
data[names == 'Bob']
array([[ 0.275 ,  0.2289,  1.3529,  0.8864],[-0.5771,  0.1241,  0.3026,  0.5238]])

在索引行的时候,还可以索引列:

data[names == 'Bob', 3]
array([0.8864, 0.5238])

可以用 ~符号来取反:

data[~(names == 'Bob')]
array([[-2.0016, -0.3718,  1.669 , -0.4386],[-0.5397,  0.477 ,  3.2489, -1.0212],[ 0.0009,  1.3438, -0.7135, -0.8312],[-2.3702, -1.8608, -0.8608,  0.5601],[-1.2659,  0.1198, -1.0635,  0.3329]])

我们可以通过布尔型数组设置值,在实际的项目中非常有用:

data[data < 0] = 0
array([[0.275 , 0.2289, 1.3529, 0.8864],[0.    , 0.    , 1.669 , 0.    ],[0.    , 0.477 , 3.2489, 0.    ],[0.    , 0.1241, 0.3026, 0.5238],[0.0009, 1.3438, 0.    , 0.    ],[0.    , 0.    , 0.    , 0.5601],[0.    , 0.1198, 0.    , 0.3329]])
data[names != 'Joe'] = 7
array([[7.    , 7.    , 7.    , 7.    ],[0.    , 0.    , 1.669 , 0.    ],[7.    , 7.    , 7.    , 7.    ],[7.    , 7.    , 7.    , 7.    ],[7.    , 7.    , 7.    , 7.    ],[0.    , 0.    , 0.    , 0.5601],[0.    , 0.1198, 0.    , 0.3329]])

Fancy indexing

Fancy indexing也叫做花式索引,它是指使用一个整数数组来进行索引。

举个例子,我们先创建一个 8 * 4的数组:

arr = np.empty((8, 4))
for i in range(8):arr[i] = i
arr
array([[0., 0., 0., 0.],[1., 1., 1., 1.],[2., 2., 2., 2.],[3., 3., 3., 3.],[4., 4., 4., 4.],[5., 5., 5., 5.],[6., 6., 6., 6.],[7., 7., 7., 7.]])

然后使用一个整数数组来索引,那么将会以指定的顺序来选择行:

arr[[4, 3, 0, 6]]
array([[4., 4., 4., 4.],[3., 3., 3., 3.],[0., 0., 0., 0.],[6., 6., 6., 6.]])

还可以使用负值来索引:

arr[[-3, -5, -7]]
array([[5., 5., 5., 5.],[3., 3., 3., 3.],[1., 1., 1., 1.]])

花式索引还可以组合来使用:

arr = np.arange(32).reshape((8, 4))
arr
array([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11],[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23],[24, 25, 26, 27],[28, 29, 30, 31]])

上面我们构建了一个8 * 4的数组。

arr[[1, 5, 7, 2], [0, 3, 1, 2]]
array([ 4, 23, 29, 10])

然后取他们的第2列的第一个值,第6列的第三个值等等。最后得到一个1维的数组。

数组变换

我们可以在不同维度的数组之间进行变换,还可以转换数组的轴。

reshape方法可以将数组转换成为任意的形状:

arr = np.arange(15).reshape((3, 5))
arr
array([[ 0,  1,  2,  3,  4],[ 5,  6,  7,  8,  9],[10, 11, 12, 13, 14]])

数组还提供了一个T命令,可以将数组的轴进行对调:

arr.T
array([[ 0,  5, 10],[ 1,  6, 11],[ 2,  7, 12],[ 3,  8, 13],[ 4,  9, 14]])

对于高维数组,可以使用transpose来进行轴的转置:

arr = np.arange(16).reshape((2, 2, 4))
arr
array([[[ 0,  1,  2,  3],[ 4,  5,  6,  7]],[[ 8,  9, 10, 11],[12, 13, 14, 15]]])arr.transpose((1, 0, 2))
array([[[ 0,  1,  2,  3],[ 8,  9, 10, 11]],[[ 4,  5,  6,  7],[12, 13, 14, 15]]])

上面的transpose((1, 0, 2)) 怎么理解呢?

其含义是将x,y轴对调,z轴保持不变。

上面我们通过使用reshape((2, 2, 4))方法创建了一个3维,也就是3个轴的数组。 其shape是 2 * 2 * 4 。

先看下对应关系:

(0,0)-》 [ 0, 1, 2, 3]

(0,1)-》 [ 4, 5, 6, 7]

(1,0)-》 [ 8, 9, 10, 11]

(1,1)-》 [12, 13, 14, 15]

转换之后:

(0,0)-》 [ 0, 1, 2, 3]

(0,1)-》 [ 8, 9, 10, 11]

(1,0)-》[ 4, 5, 6, 7]

(1,1)-》 [12, 13, 14, 15]

于是得到了我们上面的的结果。

多维数组的轴转换可能比较复杂,大家多多理解。

还可以使用 swapaxes 来交换两个轴,上面的例子可以重写为:

arr.swapaxes(0,1)

本文已收录于 http://www.flydean.com/09-python-numpy-ndarray/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

这篇关于NumPy之:ndarray多维数组操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/742635

相关文章

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

java Stream操作转换方法

《javaStream操作转换方法》文章总结了Java8中流(Stream)API的多种常用方法,包括创建流、过滤、遍历、分组、排序、去重、查找、匹配、转换、归约、打印日志、最大最小值、统计、连接、... 目录流创建1、list 转 map2、filter()过滤3、foreach遍历4、groupingB

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后