NumPy之:数据类型对象dtype

2024-02-24 16:08

本文主要是介绍NumPy之:数据类型对象dtype,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 简介
  • dtype的定义
  • 可转换为dtype的对象
    • dtype对象
    • None
    • 数组标量类型
    • 通用类型
    • 内置Python类型
    • 带有.dtype属性的对象
    • 一个字符的string对象
    • 数组类型的String
    • 逗号分割的字符串
    • 类型字符串
    • 元组
      • (flexible_dtype, itemsize)
      • (fixed_dtype, shape)
      • [(field_name, field_dtype, field_shape), ...]
      • {'names': ..., 'formats': ..., 'offsets': ..., 'titles': ..., 'itemsize': ...}
      • (base_dtype, new_dtype)

简介

之前讲到了NumPy中有多种数据类型,每种数据类型都是一个dtype(numpy.dtype )对象。今天我们来详细讲解一下dtype对象。

dtype的定义

先看下dtype方法的定义:

class numpy.dtype(obj, align=False, copy=False)

其作用就是将对象obj转成dtype类型的对象。

它带了两个可选的参数:

  • align - 是否按照C编译器的结构体输出格式对齐对象。

  • Copy - 是拷贝对象,还是对对象的引用。

dtype可以用来描述数据的类型(int,float,Python对象等),描述数据的大小,数据的字节顺序(小端或大端)等。

可转换为dtype的对象

可转换的obj对象可以有很多种类型,我们一一来进行讲解

dtype对象

如果obj对象本身就是一个dtype对象,那么可以进行无缝转换。

None

不传的话,默认就是float_,这也是为什么我们创建数组默认都是float类型的原因。

数组标量类型

内置的数组标量可以被转换成为相关的data-type对象。

前面一篇文章我们讲到了什么是数组标量类型。数组标量类型是可以通过np.type来访问的数据类型。 比如: np.int32, np.complex128等。

我们看下数组标量的转换:

In [85]: np.dtype(np.int32)
Out[85]: dtype('int32')In [86]: np.dtype(np.complex128)
Out[86]: dtype('complex128')

这些以np开头的内置数组标量类型可以参考我之前写的文章 “NumPy之:数据类型” 。

注意,数组标量并不是dtype对象,虽然很多情况下,可以在需要使用dtype对象的时候都可以使用数组标量。

通用类型

一些通用类型对象,可以被转换成为相应的dtype类型:

通用类型对象dtype类型
number, inexact, floatingfloat
complexfloatingcfloat
integer, signedintegerint_
unsignedintegeruint
characterstring
generic, flexiblevoid

内置Python类型

一些Python内置的类型和数组标量类型是等价的,也可以被转换成为dtype:

Python类型dtype类型
intint_
boolbool_
floatfloat_
complexcfloat
bytesbytes_
strstr_
buffervoid
(all others)object_

看下内置Python类型转换的例子:

In [82]: np.dtype(float)
Out[82]: dtype('float64')In [83]: np.dtype(int)
Out[83]: dtype('int64')In [84]:  np.dtype(object)
Out[84]: dtype('O')

带有.dtype属性的对象

任何type对象只要包含dtype属性,并且这个属性属于可以转换的范围的话,都可以被转换成为dtype。

一个字符的string对象

对于每个内置的数据类型来说都有一个和它对应的字符编码,我们也可以使用这些字符编码来进行转换:

In [134]: np.dtype('b')  # byte, native byte order
Out[134]: dtype('int8')In [135]: np.dtype('>H')  # big-endian unsigned short
Out[135]: dtype('>u2')In [136]: np.dtype('<f') # little-endian single-precision float
Out[136]: dtype('float32')In [137]: np.dtype('d') # double-precision floating-point number
Out[137]: dtype('float64')

数组类型的String

Numpy中数组类型的对象有一个属性叫做typestr

typestr描述了这个数组中存放的数据类型和长度。

typestr由三部分组成,第一部分是描述数据字节顺序: < 小端 > 大端。

第二部分是数组里面元素的基本类型:

类型描述
tBit field (following integer gives the number of bits in the bit field).
bBoolean (integer type where all values are only True or False)
iInteger
uUnsigned integer
fFloating point
cComplex floating point
mTimedelta
MDatetime
OObject (i.e. the memory contains a pointer to PyObject)
SString (fixed-length sequence of char)
UUnicode (fixed-length sequence of Py_UNICODE)
VOther (void * – each item is a fixed-size chunk of memory)

最后一部分就是数据的长度。

dtype支持下面几种类型的转换:

类型描述
'?'boolean
'b'(signed) byte
'B'unsigned byte
'i'(signed) integer
'u'unsigned integer
'f'floating-point
'c'complex-floating point
'm'timedelta
'M'datetime
'O'(Python) objects
'S', 'a'zero-terminated bytes (not recommended)
'U'Unicode string
'V'raw data (void)

我们看几个例子:

In [137]: np.dtype('d')
Out[137]: dtype('float64')In [138]: np.dtype('i4')
Out[138]: dtype('int32')In [139]: np.dtype('f8')
Out[139]: dtype('float64')In [140]:  np.dtype('c16')
Out[140]: dtype('complex128')In [141]: np.dtype('a25')
Out[141]: dtype('S25')In [142]: np.dtype('U25')
Out[142]: dtype('<U25')

逗号分割的字符串

逗号分割的字符串可以用来表示结构化的数据类型。

对于这种结构化的数据类型也可以转换成为dtpye格式,转换后的dtype,将会以f1,f2, … fn-1作为名字来保存对应的格式数据。我们举个例子:

In [143]: np.dtype("i4, (2,3)f8, f4")
Out[143]: dtype([('f0', '<i4'), ('f1', '<f8', (2, 3)), ('f2', '<f4')])

上面的例子中,f0保存的是32位的整数,f1保存的是 2 x 3 数组的64-bit 浮点数。f2是一个32-bit 的浮点数。

再看另外一个例子:

In [144]: np.dtype("a3, 3u8, (3,4)a10")
Out[144]: dtype([('f0', 'S3'), ('f1', '<u8', (3,)), ('f2', 'S10', (3, 4))])

类型字符串

所有在numpy.sctypeDict.keys()中的字符,都可以被转换为dtype:

In [146]: np.sctypeDict.keys()
Out[146]: dict_keys(['?', 0, 'byte', 'b', 1, 'ubyte', 'B', 2, 'short', 'h', 3, 'ushort', 'H', 4, 'i', 5, 'uint', 'I', 6, 'intp', 'p', 7, 'uintp', 'P', 8, 'long', 'l', 'L', 'longlong', 'q', 9, 'ulonglong', 'Q', 10, 'half', 'e', 23, 'f', 11, 'double', 'd', 12, 'longdouble', 'g', 13, 'cfloat', 'F', 14, 'cdouble', 'D', 15, 'clongdouble', 'G', 16, 'O', 17, 'S', 18, 'unicode', 'U', 19, 'void', 'V', 20, 'M', 21, 'm', 22, 'bool8', 'Bool', 'b1', 'float16', 'Float16', 'f2', 'float32', 'Float32', 'f4', 'float64', 'Float64', 'f8', 'float128', 'Float128', 'f16', 'complex64', 'Complex32', 'c8', 'complex128', 'Complex64', 'c16', 'complex256', 'Complex128', 'c32', 'object0', 'Object0', 'bytes0', 'Bytes0', 'str0', 'Str0', 'void0', 'Void0', 'datetime64', 'Datetime64', 'M8', 'timedelta64', 'Timedelta64', 'm8', 'int64', 'uint64', 'Int64', 'UInt64', 'i8', 'u8', 'int32', 'uint32', 'Int32', 'UInt32', 'i4', 'u4', 'int16', 'uint16', 'Int16', 'UInt16', 'i2', 'u2', 'int8', 'uint8', 'Int8', 'UInt8', 'i1', 'u1', 'complex_', 'int0', 'uint0', 'single', 'csingle', 'singlecomplex', 'float_', 'intc', 'uintc', 'int_', 'longfloat', 'clongfloat', 'longcomplex', 'bool_', 'unicode_', 'object_', 'bytes_', 'str_', 'string_', 'int', 'float', 'complex', 'bool', 'object', 'str', 'bytes', 'a'])

使用的例子:

In [147]: np.dtype('uint32')
Out[147]: dtype('uint32')In [148]: np.dtype('float64')
Out[148]: dtype('float64')

元组

通过使用dtype构成的元组,我们可以生成新的dtype。

元组也有很多种方式。

(flexible_dtype, itemsize)

对于不固定长度的dtype,可以指定size:

In [149]: np.dtype((np.void, 10))
Out[149]: dtype('V10')In [150]: np.dtype(('U', 10))
Out[150]: dtype('<U10')

(fixed_dtype, shape)

对于固定长度的dtype,可以指定shape:

In [151]:  np.dtype((np.int32, (2,2)))
Out[151]: dtype(('<i4', (2, 2)))In [152]: np.dtype(('i4, (2,3)f8, f4', (2,3)))
Out[152]: dtype(([('f0', '<i4'), ('f1', '<f8', (2, 3)), ('f2', '<f4')], (2, 3)))

[(field_name, field_dtype, field_shape), …]

list中的元素是一个个的field,每个field都是由2-3个部分组成的,分别是field名字,field类型,field的shape。

field_name如果是 ’ ‘的话,就会使用默认的f1,f2 ….作为名字。field_name 也可以是一个2元组,由title 和 name 组成。

field_dtype 就是field的dtype类型。

shape是一个可选字段,如果field_dtype是一个数组的话,就需要指定shape。

In [153]: np.dtype([('big', '>i4'), ('little', '<i4')])
Out[153]: dtype([('big', '>i4'), ('little', '<i4')])

上面是两个字段,一个是大端的32位的int,一个是小端的32位的int。

In [154]: np.dtype([('R','u1'), ('G','u1'), ('B','u1'), ('A','u1')])
Out[154]: dtype([('R', 'u1'), ('G', 'u1'), ('B', 'u1'), ('A', 'u1')])

四个字段,每个都是无符号整形。

{‘names’: …, ‘formats’: …, ‘offsets’: …, ‘titles’: …, ‘itemsize’: …}

这种写法可以指定name列表和formats列表:

In [157]: np.dtype({'names': ['r','g','b','a'], 'formats': [np.uint8, np.uint8, np.uint8, np.uint8]})
Out[157]: dtype([('r', 'u1'), ('g', 'u1'), ('b', 'u1'), ('a', 'u1')])

offsets 指的是每个字段的byte offsets。titles 是字段的title,itemsize 是整个dtype的size。

In [158]: np.dtype({'names': ['r','b'], 'formats': ['u1', 'u1'],...:                'offsets': [0, 2],...:                'titles': ['Red pixel', 'Blue pixel']})...:
Out[158]: dtype({'names':['r','b'], 'formats':['u1','u1'], 'offsets':[0,2], 'titles':['Red pixel','Blue pixel'], 'itemsize':3})

(base_dtype, new_dtype)

可以将基本的dtype类型转换为结构化的dtype类型:

In [159]: np.dtype((np.int32,{'real':(np.int16, 0),'imag':(np.int16, 2)}))
Out[159]: dtype([('real', '<i2'), ('imag', '<i2')])

32位的int转换成两个16位的int。

In [161]: np.dtype(('i4', [('r','u1'),('g','u1'),('b','u1'),('a','u1')]))
Out[161]: dtype([('r', 'u1'), ('g', 'u1'), ('b', 'u1'), ('a', 'u1')])

32位的int,转换成4个unsigned integers。

本文已收录于 http://www.flydean.com/04-python-numpy-datatype-obj/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

这篇关于NumPy之:数据类型对象dtype的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/742633

相关文章

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

C语言中的数据类型强制转换

《C语言中的数据类型强制转换》:本文主要介绍C语言中的数据类型强制转换方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C语言数据类型强制转换自动转换强制转换类型总结C语言数据类型强制转换强制类型转换:是通过类型转换运算来实现的,主要的数据类型转换分为自动转换

Redis中的常用的五种数据类型详解

《Redis中的常用的五种数据类型详解》:本文主要介绍Redis中的常用的五种数据类型详解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis常用的五种数据类型一、字符串(String)简介常用命令应用场景二、哈希(Hash)简介常用命令应用场景三、列表(L

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3

python多种数据类型输出为Excel文件

《python多种数据类型输出为Excel文件》本文主要介绍了将Python中的列表、元组、字典和集合等数据类型输出到Excel文件中,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一.列表List二.字典dict三.集合set四.元组tuplepython中的列表、元组、字典

Java实现将byte[]转换为File对象

《Java实现将byte[]转换为File对象》这篇文章将通过一个简单的例子为大家演示Java如何实现byte[]转换为File对象,并将其上传到外部服务器,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言1. 问题背景2. 环境准备3. 实现步骤3.1 从 URL 获取图片字节数据3.2 将字节数组

Javascript访问Promise对象返回值的操作方法

《Javascript访问Promise对象返回值的操作方法》这篇文章介绍了如何在JavaScript中使用Promise对象来处理异步操作,通过使用fetch()方法和Promise对象,我们可以从... 目录在Javascript中,什么是Promise1- then() 链式操作2- 在之后的代码中使

MyBatis的配置对象Configuration作用及说明

《MyBatis的配置对象Configuration作用及说明》MyBatis的Configuration对象是MyBatis的核心配置对象,它包含了MyBatis运行时所需的几乎所有配置信息,这个对... 目录MyBATis配置对象Configuration作用Configuration 对象的主要作用C

SpringBoot实现导出复杂对象到Excel文件

《SpringBoot实现导出复杂对象到Excel文件》这篇文章主要为大家详细介绍了如何使用Hutool和EasyExcel两种方式来实现在SpringBoot项目中导出复杂对象到Excel文件,需要... 在Spring Boot项目中导出复杂对象到Excel文件,可以利用Hutool或EasyExcel

Springboot控制反转与Bean对象的方法

《Springboot控制反转与Bean对象的方法》文章介绍了SpringBoot中的控制反转(IoC)概念,描述了IoC容器如何管理Bean的生命周期和依赖关系,它详细讲解了Bean的注册过程,包括... 目录1 控制反转1.1 什么是控制反转1.2 SpringBoot中的控制反转2 Ioc容器对Bea