CSP-J 2023 T3 一元二次方程

2024-02-24 04:28
文章标签 2023 csp t3 一元二次方程

本文主要是介绍CSP-J 2023 T3 一元二次方程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 题目
    • 题目背景
    • 题目描述
    • 输入格式
    • 输出格式
    • 样例 #1
      • 样例输入 #1
      • 样例输出 #1
    • 提示
  • 题目传送门
  • 题解
    • 思路
    • 总代码
  • 提交结果
  • 尾声

题目

题目背景

众所周知,对一元二次方程 a x 2 + b x + c = 0 , ( a ≠ 0 ) ax ^ 2 + bx + c = 0, (a \neq 0) ax2+bx+c=0,(a=0),可以用以下方式求实数解:

  • 计算 Δ = b 2 − 4 a c \Delta = b ^ 2 - 4ac Δ=b24ac,则:
    1. Δ < 0 \Delta < 0 Δ<0,则该一元二次方程无实数解。
    2. 否则 Δ ≥ 0 \Delta \geq 0 Δ0,此时该一元二次方程有两个实数解 x 1 , 2 = − b ± Δ 2 a x _ {1, 2} = \frac{-b \pm \sqrt \Delta}{2a} x1,2=2ab±Δ

例如:

  • x 2 + x + 1 = 0 x ^ 2 + x + 1 = 0 x2+x+1=0 无实数解,因为 Δ = 1 2 − 4 × 1 × 1 = − 3 < 0 \Delta = 1 ^ 2 - 4 \times 1 \times 1 = -3 < 0 Δ=124×1×1=3<0
  • x 2 − 2 x + 1 = 0 x ^ 2 - 2x + 1 = 0 x22x+1=0 有两相等实数解 x 1 , 2 = 1 x _ {1, 2} = 1 x1,2=1
  • x 2 − 3 x + 2 = 0 x ^ 2 - 3x + 2 = 0 x23x+2=0 有两互异实数解 x 1 = 1 , x 2 = 2 x _ 1 = 1, x _ 2 = 2 x1=1,x2=2

在题面描述中 a a a b b b 的最大公因数使用 gcd ⁡ ( a , b ) \gcd(a, b) gcd(a,b) 表示。例如 12 12 12 18 18 18 的最大公因数是 6 6 6,即 gcd ⁡ ( 12 , 18 ) = 6 \gcd(12, 18) = 6 gcd(12,18)=6

题目描述

现在给定一个一元二次方程的系数 a , b , c a, b, c a,b,c,其中 a , b , c a, b, c a,b,c 均为整数且 a ≠ 0 a \neq 0 a=0。你需要判断一元二次方程 a x 2 + b x + c = 0 a x ^ 2 + bx + c = 0 ax2+bx+c=0 是否有实数解,并按要求的格式输出。

在本题中输出有理数 v v v 时须遵循以下规则:

  • 由有理数的定义,存在唯一的两个整数 p p p q q q,满足 q > 0 q > 0 q>0 gcd ⁡ ( p , q ) = 1 \gcd(p, q) = 1 gcd(p,q)=1 v = p q v = \frac pq v=qp

  • q = 1 q = 1 q=1则输出 {p},否则输出 {p}/{q},其中 {n} 代表整数 n n n 的值;

  • 例如:

    • v = − 0.5 v = -0.5 v=0.5 时, p p p q q q 的值分别为 − 1 -1 1 2 2 2,则应输出 -1/2
    • v = 0 v = 0 v=0 时, p p p q q q 的值分别为 0 0 0 1 1 1,则应输出 0

对于方程的求解,分两种情况讨论:

  1. Δ = b 2 − 4 a c < 0 \Delta = b ^ 2 - 4ac < 0 Δ=b24ac<0,则表明方程无实数解,此时你应当输出 NO

  2. 否则 Δ ≥ 0 \Delta \geq 0 Δ0,此时方程有两解(可能相等),记其中较大者为 x x x,则:

    1. x x x 为有理数,则按有理数的格式输出 x x x

    2. 否则根据上文公式, x x x 可以被唯一表示为 x = q 1 + q 2 r x = q _ 1 + q _ 2 \sqrt r x=q1+q2r 的形式,其中:

      • q 1 , q 2 q _ 1, q _ 2 q1,q2 为有理数,且 q 2 > 0 q _ 2 > 0 q2>0
      • r r r 为正整数且 r > 1 r > 1 r>1,且不存在正整数 d > 1 d > 1 d>1 使 d 2 ∣ r d ^ 2 \mid r d2r(即 r r r 不应是 d 2 d ^ 2 d2 的倍数);

    此时:

    1. q 1 ≠ 0 q _ 1 \neq 0 q1=0,则按有理数的格式输出 q 1 q _ 1 q1,并再输出一个加号 +
    2. 否则跳过这一步输出;

    随后:

    1. q 2 = 1 q _ 2 = 1 q2=1,则输出 sqrt({r})
    2. 否则若 q 2 q _ 2 q2 为整数,则输出 {q2}*sqrt({r})
    3. 否则若 q 3 = 1 q 2 q _ 3 = \frac 1{q _ 2} q3=q21 为整数,则输出 sqrt({r})/{q3}
    4. 否则可以证明存在唯一整数 c , d c, d c,d 满足 c , d > 1 , gcd ⁡ ( c , d ) = 1 c, d > 1, \gcd(c, d) = 1 c,d>1,gcd(c,d)=1 q 2 = c d q _ 2 = \frac cd q2=dc,此时输出 {c}*sqrt({r})/{d}

    上述表示中 {n} 代表整数 {n} 的值,详见样例。

    如果方程有实数解,则按要求的格式输出两个实数解中的较大者。否则若方程没有实数解,则输出 NO

输入格式

输入的第一行包含两个正整数 T , M T, M T,M,分别表示方程数和系数的绝对值上限。

接下来 T T T 行,每行包含三个整数 a , b , c a, b, c a,b,c

输出格式

输出 T T T 行,每行包含一个字符串,表示对应询问的答案,格式如题面所述。

每行输出的字符串中间不应包含任何空格

样例 #1

样例输入 #1

9 1000
1 -1 0
-1 -1 -1
1 -2 1
1 5 4
4 4 1
1 0 -432
1 -3 1
2 -4 1
1 7 1

样例输出 #1

1
NO
1
-1
-1/2
12*sqrt(3)
3/2+sqrt(5)/2
1+sqrt(2)/2
-7/2+3*sqrt(5)/2

提示

【样例 #2】

见附件中的 uqe/uqe2.inuqe/uqe2.ans

【数据范围】

对于所有数据有: 1 ≤ T ≤ 5000 1 \leq T \leq 5000 1T5000 1 ≤ M ≤ 1 0 3 1 \leq M \leq 10 ^ 3 1M103 ∣ a ∣ , ∣ b ∣ , ∣ c ∣ ≤ M |a|,|b|,|c| \leq M a,b,cM a ≠ 0 a \neq 0 a=0

测试点编号 M ≤ M \leq M特殊性质 A特殊性质 B特殊性质 C
1 1 1 1 1 1
2 2 2 20 20 20
3 3 3 1 0 3 10 ^ 3 103
4 4 4 1 0 3 10 ^ 3 103
5 5 5 1 0 3 10 ^ 3 103
6 6 6 1 0 3 10 ^ 3 103
7 , 8 7, 8 7,8 1 0 3 10 ^ 3 103
9 , 10 9, 10 9,10 1 0 3 10 ^ 3 103

其中:

  • 特殊性质 A:保证 b = 0 b = 0 b=0
  • 特殊性质 B:保证 c = 0 c = 0 c=0
  • 特殊性质 C:如果方程有解,那么方程的两个解都是整数。

题目传送门

洛谷 P9750 [CSP-J 2023] 一元二次方程

题解

思路

没有任何算法,纯粹的大模拟,细节还蛮多的

由于这道题有多测,所以用一个函数比较好,可以把 a , b , c a,b,c a,b,c 都传进去,这就是主函数

int T, m;
int a, b, c;
int main() {scanf("%d%d", &T, &m);while(T-- && scanf("%d%d%d", &a, &b, &c))work(a, b, c);return 0;
}

函数里面首先是判断无解,也就是 Δ < 0 \Delta<0 Δ<0,那我们就需要算出 Δ \Delta Δ,即 b 2 − 4 a c b^2-4ac b24ac

int delta = b * b - 4 * a * c;void work(int a, int b, int c) {delta = b * b - 4 * a * c;if(delta < 0) {puts("NO");return;}
}

然后需要判断 Δ \Delta Δ 是完全平方数,那么就可以直接算出 − b + Δ 2 a \frac{-b+\sqrt\Delta}{2a} 2ab+Δ − b − Δ 2 a \frac{-b-\sqrt\Delta}{2a} 2abΔ 哪个大,然后如果能除开就直接输出那个根,否则就输出约分后的那个根

(那个 p r i n t d i v i s i o n ( p , q ) printdivision(p,q) printdivision(p,q) 函数是用来输出 p / q p/q p/q 的,具体请参考注释)

int delta;
double x1, x2;
int sq;void print_division(int p, int q) {if(!p) {											// 分子为 0,则输出 0 putchar('0');return;}if(p * q < 0)										// 两数异号,则输出符号 putchar('-');if(p < 0)											// 将两数都变成正数 p = -p;if(q < 0)q = -q;int g = __gcd(p, q);								// 约分 p /= g;q /= g;if(q == 1)											// 分母为 1,则输出分子 printf("%d", p);else												// 否则输出 “分子/分母” printf("%d/%d", p, q);
}void work(int a, int b, int c) {delta = b * b - 4 * a * c;if(delta < 0) {puts("NO");return;}sq = sqrt(delta);if(sq * sq == delta) {x1 = 1.0 * (-b + sq) / 2 * a;x2 = 1.0 * (-b - sq) / 2 * a;if(x1 > x2)print_division(-b + sq, 2 * a);elseprint_division(-b - sq, 2 * a);puts("");return;}
}

否则的话就需要按照 “ − b / 2 a + Δ / 2 a -b/2a+\sqrt\Delta/2a b/2a+Δ /2a” 的格式输出

首先如果 b ≠ 0 b\neq0 b=0,那么就说明 − b / 2 a ≠ 0 -b/2a\neq0 b/2a=0,就可以输出 “ − b / 2 a + -b/2a+ b/2a+

为什么一定是 + + + ?因为如果是 − b − Δ 2 a \frac{-b-\sqrt\Delta}{2a} 2abΔ 更大,那就说明 2 a < 0 2a<0 2a<0,否则不可能 − b − Δ 2 a > − b − Δ 2 a \frac{-b-\sqrt\Delta}{2a}>\frac{-b-\sqrt\Delta}{2a} 2abΔ >2abΔ ,所以一定是 + + +

最后就是输出 Δ / 2 a \sqrt\Delta/2a Δ /2a 了,具体怎么做请参考代码注释

int delta;
double x1, x2;
int sq;void print_division(int p, int q) {if(!p) {											// 分子为 0,则输出 0 putchar('0');return;}if(p * q < 0)										// 两数异号,则输出符号 putchar('-');if(p < 0)											// 将两数都变成正数 p = -p;if(q < 0)q = -q;int g = __gcd(p, q);								// 约分 p /= g;q /= g;if(q == 1)											// 分母为 1,则输出分子 printf("%d", p);else												// 否则输出 “分子/分母” printf("%d/%d", p, q);
}void print_sqrt(int p, int q) {if(q < 0)											// 如果分母是负数,则将其变为正数,因为和前面的负号消没了(上文说过了) q = -q;int u = 1;											// 根号前面的系数 for(int i = sqrt(p); i > 1; --i)					// 化简 if(!(p % (i * i))) {p /= i * i;u *= i;break; }int g = __gcd(u, q);								// 约分 u /= g;q /= g;if(u > 1)											// 系数大于 1,则输出 “系数*” printf("%d*", u);if(p > 1)											// 根号下的数大于 1,则输出 “sqrt(根号下的数)” printf("sqrt(%d)", p);if(q > 1)											// 分母大于 1,则输出 “/分母” printf("/%d", q);
}void work(int a, int b, int c) {delta = b * b - 4 * a * c;if(delta < 0) {puts("NO");return;}sq = sqrt(delta);if(sq * sq == delta) {x1 = 1.0 * (-b + sq) / 2 * a;x2 = 1.0 * (-b - sq) / 2 * a;if(x1 > x2)print_division(-b + sq, 2 * a);elseprint_division(-b - sq, 2 * a);puts("");return;}if(b) {print_division(-b, 2 * a);putchar('+');}print_sqrt(delta, 2 * a);puts("");
}

总代码

#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;int T, m;
int a, b, c;
int delta;
double x1, x2;
int sq;void print_division(int p, int q) {if(!p) {putchar('0');return;}if(p * q < 0)putchar('-');if(p < 0)p = -p;if(q < 0)q = -q;int g = __gcd(p, q);p /= g;q /= g;if(q == 1)printf("%d", p);elseprintf("%d/%d", p, q);
}void print_sqrt(int p, int q) {if(q < 0)q = -q;int u = 1;for(int i = sqrt(p); i > 1; --i)if(!(p % (i * i))) {p /= i * i;u *= i;break; }int g = __gcd(u, q);u /= g;q /= g;if(u > 1)printf("%d*", u);if(p > 1)printf("sqrt(%d)", p);if(q > 1)printf("/%d", q);
}void work(int a, int b, int c) {delta = b * b - 4 * a * c;if(delta < 0) {puts("NO");return;}sq = sqrt(delta);if(sq * sq == delta) {x1 = 1.0 * (-b + sq) / 2 * a;x2 = 1.0 * (-b - sq) / 2 * a;if(x1 > x2)print_division(-b + sq, 2 * a);elseprint_division(-b - sq, 2 * a);puts("");return;}if(b) {print_division(-b, 2 * a);putchar('+');}print_sqrt(delta, 2 * a);puts("");
}int main() {scanf("%d%d", &T, &m);while(T-- && scanf("%d%d%d", &a, &b, &c))work(a, b, c);return 0;
}

提交结果

戳这里看我的提交记录
提交结果

尾声

如果这篇题解对您(或您的团队)有帮助的话,就帮忙点个赞,加个关注!

最后,祝您(或您的团队)在 OI 的路上一路顺风!!!

┬┴┬┴┤・ω・)ノ Bye~

这篇关于CSP-J 2023 T3 一元二次方程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740940

相关文章

CSP 2023 提高级第一轮 CSP-S 2023初试题 完善程序第二题解析 未完

一、题目阅读 (最大值之和)给定整数序列 a0,⋯,an−1,求该序列所有非空连续子序列的最大值之和。上述参数满足 1≤n≤105 和 1≤ai≤108。 一个序列的非空连续子序列可以用两个下标 ll 和 rr(其中0≤l≤r<n0≤l≤r<n)表示,对应的序列为 al,al+1,⋯,ar​。两个非空连续子序列不同,当且仅当下标不同。 例如,当原序列为 [1,2,1,2] 时,要计算子序列 [

HNU-2023电路与电子学-实验3

写在前面: 一、实验目的 1.了解简易模型机的内部结构和工作原理。 2.分析模型机的功能,设计 8 重 3-1 多路复用器。 3.分析模型机的功能,设计 8 重 2-1 多路复用器。 4.分析模型机的工作原理,设计模型机控制信号产生逻辑。 二、实验内容 1.用 VERILOG 语言设计模型机的 8 重 3-1 多路复用器; 2.用 VERILOG 语言设计模型机的 8 重 2-1 多

CSP-J基础之数学基础 初等数论 一篇搞懂(一)

文章目录 前言声明初等数论是什么初等数论历史1. **古代时期**2. **中世纪时期**3. **文艺复兴与近代**4. **现代时期** 整数的整除性约数什么样的整数除什么样的整数才能得到整数?条件:举例说明:一般化: 判断两个数能否被整除 因数与倍数质数与复合数使用开根号法判定质数哥德巴赫猜想最大公因数与辗转相除法计算最大公因数的常用方法:举几个例子:例子 1: 计算 12 和 18

CSP-J基础之数学基础 初等数论 一篇搞懂(二)

文章目录 前言算术基本定理简介什么是质数?举个简单例子:重要的结论:算术基本定理公式解释:举例: 算术基本定理的求法如何找出质因数:举个简单的例子: 重要的步骤:C++实现 同余举个例子:同余的性质简介1. 同余的自反性2. 同余的对称性3. 同余的传递性4. 同余的加法性质5. 同余的乘法性质 推论 总结 前言 在计算机科学和数学中,初等数论是一个重要的基础领域,涉及到整数

CSP-J基础之cmath常见函数

文章目录 前言1. **`sin` 函数**2. **`cos` 函数**3. **`exp` 函数**4. **`log` 函数**5. **`fabs` 函数**6. **`pow` 函数**7. **`sqrt` 函数**8. **`ceil` 函数**9. **`floor` 函数** 总结 前言 在计算机科学与编程中,数学函数是解决各种计算问题的基础工具。C++标准

CSP-J选择题 - 排列组合

排列问题:有5名学生参加比赛,要求排成一排拍照,有多少种不同的排列方式?组合问题:从10本书中选出3本书送给朋友,有多少种不同的选择方式?排列问题:一个教室有7个座位,5个学生需要坐下,有多少种不同的排列方式?组合问题:从12个人中选出4个人组成一个团队,有多少种不同的方式?排列问题:一个密码由4个字母组成,字母可以重复使用,有多少种不同的排列组合?组合问题:从8个不同颜色的球中选出3个,不考虑顺

2023 CCPC(秦皇岛)现场(第二届环球杯.第 2 阶段:秦皇岛)部分题解

所有题目链接:Dashboard - The 2023 CCPC (Qinhuangdao) Onsite (The 2nd Universal Cup. Stage 9: Qinhuangdao) - Codeforces 中文题面: contest-37054-zh.pdf (codeforces.com) G. Path 链接: Problem - G - Codeforces

CSP-J 之C++常用英文缩写

文章目录 C++常用英文缩写前言常用缩写解析C++ 基础缩写输入输出相关控制台 命名与类型常用函数在线测评相关 总结 C++常用英文缩写 前言 在编程比赛和日常开发中,C++是一门广泛使用的编程语言,许多英文缩写贯穿其中。了解这些缩写不仅有助于提高编程效率,还能加深对编程语言及其工作机制的理解。本文将介绍C++中常见的英文缩写,以及它们在编程中的实际含义和应用。 常用

HNU-2023电路与电子学-实验1

写在前面: 这是电路与电子学课程的第一次实验,按照指导书的需求在Multisim软件搭建一个电路传感器模型,难度较小,细心完成就没有问题。 小tips:22级实验是采用上传到测试平台来进行功能检测,如果不通过则会打回修改后再重新提交,(我们那时候的评测系统特别特别慢,一次只能测一个同学,剩下同学就排队等着,久的时候甚至超过10个小时),这里列举一个常见的错误:热噪声有+号这端需要连接有源滤波器

P7072 [CSP-J2020] 直播获奖

题目描述     NOI2130即将举行。为了增加观赏性,CCF决定逐一评出每个选手的成绩,并直播即时的获奖分数线。本次竞赛的获奖率为w% 的选手的最低成绩就是即时的分数线。     更具体地,若当前已评出了 p 个选手的成绩,则当前计划获奖人数为max(1,⌊p∗w%⌋),其中w是获奖百分比,⌊x⌋ 表示对x向下取整,max(x,y) 表示x和y中较大的数。如有选手成绩相同,则所有成绩并列的