【刷题记录】尼科彻斯定理、数对

2024-02-23 23:28

本文主要是介绍【刷题记录】尼科彻斯定理、数对,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本系列博客为个人刷题思路分享,有需要借鉴即可。

今天是收集了近期遇到了两道带有鲜明的数学性质的编程题,特地整理了一下进行分享

1.题目链接:
T1:LINK
T2:LINK
2.详解思路:

T1:
在这里插入图片描述
思路1:在这里插入图片描述
总感觉上面写的解析也能读,就是没有图不是很完善,这里就补充一下解析吧。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
思路2:暴力求解,一个一个试。分析略。

下面是思路1代码示例:

#include <stdio.h>
int main()
{
int m;
while(~scanf("%d", &m)){
int start = m * (m - 1) + 1;//找到对应m^3的起始奇数
char buf[10240] = {0};
//sprintf(buf, format, ...) 与printf用法类似,格式化字符串但是不用于打印而是放到一个buf中
sprintf(buf, "%d", start);//先将起始奇数转换成为字符串存入buf中
for (int i = 1; i < m; i++) {
//然后将紧随随后的m-1个奇数数字转换为字符串,按照指定格式放入buf中
//%s+%d, 要求先有一个字符串,然后是+符号,然后是个数字的格式,对应是buf原先的数据,和奇数
sprintf(buf, "%s+%d", buf, start+=2);
}
printf("%s\n", buf);
}
return 0;
}

下面是思路2的代码示例:

#include <stdio.h>int main()
{int n;//搞个空间while (scanf("%d", &n) != EOF){int a = 0;//这是可能滴起点int sum = 0;int i = 0;int j = 0;//试一下,找到起点for (i = 73; i <= n * n * n; i += 2){sum = 0;int t = i;for (j = 0; j < n; j++){a = t;sum += t;t += 2;}if (sum == (n * n * n)){break;}}//a是最后一个值,回归最初一个值a = a - (n - 1) * 2;//输出printf("%d", a);for (i = 0; i < n - 1; i++){printf("+%d", a += 2);}}return 0;
}

T2:
在这里插入图片描述
这里之前看到一篇比较好的文章解析过这个题目,我这里就直接把链接放过来了。

https://blog.csdn.net/wyd_333/article/details/126640830
可以点超链接LINK

下面是代码示例:

#include <stdio.h> int main() { long n, k;     //本题中数值比较大,应用long来定义整数while(~scanf("%ld %ld", &n, &k)){ if (k == 0)     //单独判断k==0的情况{ printf("%ld\n", n * n);    //任意数对的取模结果都是大于等于0的 continue; }long count = 0; for(long y = k + 1; y <= n; y++)     //y的范围:k+1到n{ //每种情况都加起来count += ((n / y) * (y - k)) + ((n % y < k) ? 0 : (n % y - k + 1)); }printf("%ld\n", count); }return 0; 
}

完。

这篇关于【刷题记录】尼科彻斯定理、数对的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740273

相关文章

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

关于rpc长连接与短连接的思考记录

《关于rpc长连接与短连接的思考记录》文章总结了RPC项目中长连接和短连接的处理方式,包括RPC和HTTP的长连接与短连接的区别、TCP的保活机制、客户端与服务器的连接模式及其利弊分析,文章强调了在实... 目录rpc项目中的长连接与短连接的思考什么是rpc项目中的长连接和短连接与tcp和http的长连接短

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Servlet中配置和使用过滤器的步骤记录

《Servlet中配置和使用过滤器的步骤记录》:本文主要介绍在Servlet中配置和使用过滤器的方法,包括创建过滤器类、配置过滤器以及在Web应用中使用过滤器等步骤,文中通过代码介绍的非常详细,需... 目录创建过滤器类配置过滤器使用过滤器总结在Servlet中配置和使用过滤器主要包括创建过滤器类、配置过滤

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python与QT联合的详细步骤记录

《python与QT联合的详细步骤记录》:本文主要介绍python与QT联合的详细步骤,文章还展示了如何在Python中调用QT的.ui文件来实现GUI界面,并介绍了多窗口的应用,文中通过代码介绍... 目录一、文章简介二、安装pyqt5三、GUI页面设计四、python的使用python文件创建pytho

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓