模4补码(也称为变形补码)详解

2024-02-23 01:48
文章标签 详解 变形 补码 称为

本文主要是介绍模4补码(也称为变形补码)详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 模4补码又称为变形补码
  • 在这里插入图片描述
  • 概念是:用两个二进制位来表示符号位,其余位与补码相同,【例如模2补码的-3为1101,模2用1位,这里是最高位表示符号位,剩下3位是3的补码,同样模4补码表示-3为11_101,模4用两位表示符号位,这里是最高两位11,其余3位为3的补码】总的说来就是符号位左边那一位表示正确的符号(这就说明了选择题里面存储模4补码只需要一个符号位是正确的,因为任意一个正确的数值,模4补码的符号位两个都是一样的,只需存储一个就行了),0为正,1为负;右边那一位如果和左边的相同,如 "00”表示正且无溢出,"11"表示负且无溢出。如果右边那一位与左边那一位不一样,则表示有溢出。
  • 例子
    1.产生01
    先看模2补码加法:
    0111
    + 0010
    = 1001
    换成原码为1111,读作-7,这显然是错误的,因为两个整数相加不可能得到一个负数,肯定产生了溢出**(注:补码运算符号位也参与运算)(这说明了选择题中,存储模4补码时,只存储一位符号就行了,但运算时,它需要两个符号位都参与计算【即送入ALU中计算】来判断溢出与否,10或01溢出)**。
    再看模4补码加法:
    以两位bit位表示符号位
    00_111
    • 00_010
      = 01_001
      此时读数,最左边的符号位是0,所以表示正数,换成原码,得出读成+9,这个结果就很正确了,而且,符号位和次高位不一致,因此溢出。(注:补码运算符号位也参与运算)。

2.产生10
先看模2补码加法:
1001
+ 1010
= 10011
舍弃溢出的最高位,所以最高位丢弃,得0011,换成原码即本身,位+3,这显然是不对的,产生了溢出。(注:补码运算符号位也参与运算)。
再看模4补码加法:
以两位bit位表示符号位
11_001
+ 11_010
= 110_011
此时读数,舍弃溢出的最高位,得到10_011,最左边的符号位是1,所以表示负数,换成原码,得出读成-13,这个结果就很正确了,而且,符号位和次高位不一致,因此溢出。(注:补码运算符号位也参与运算)。

这篇关于模4补码(也称为变形补码)详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/737153

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

hdu3389(阶梯博弈变形)

题意:有n个盒子,编号1----n,每个盒子内有一些小球(可以为空),选择一个盒子A,将A中的若干个球移到B中,满足条件B  < A;(A+B)%2=1;(A+B)%3=0 这是阶梯博弈的变形。 先介绍下阶梯博弈: 在一个阶梯有若干层,每层上放着一些小球,两名选手轮流选择一层上的若干(不能为0)小球从上往下移动,最后一次移动的胜出(最终状态小球都在地面上) 如上图所示,小球数目依次为

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

LabVIEW FIFO详解

在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式,包括目标范围内FIFO(Target-Scoped)、DMA FIFO以及点对点流(Peer-to-Peer)。 FIFO类型 **目标范围FIFO(Target-Sc

019、JOptionPane类的常用静态方法详解

目录 JOptionPane类的常用静态方法详解 1. showInputDialog()方法 1.1基本用法 1.2带有默认值的输入框 1.3带有选项的输入对话框 1.4自定义图标的输入对话框 2. showConfirmDialog()方法 2.1基本用法 2.2自定义按钮和图标 2.3带有自定义组件的确认对话框 3. showMessageDialog()方法 3.1

脏页的标记方式详解

脏页的标记方式 一、引言 在数据库系统中,脏页是指那些被修改过但还未写入磁盘的数据页。为了有效地管理这些脏页并确保数据的一致性,数据库需要对脏页进行标记。了解脏页的标记方式对于理解数据库的内部工作机制和优化性能至关重要。 二、脏页产生的过程 当数据库中的数据被修改时,这些修改首先会在内存中的缓冲池(Buffer Pool)中进行。例如,执行一条 UPDATE 语句修改了某一行数据,对应的缓