机器学习预测夺得世界杯冠军

2024-02-22 23:59

本文主要是介绍机器学习预测夺得世界杯冠军,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://medium.com/@itsmuriuki/predicting-fifa-world-cup-2018-using-machine-learning-dc07ad8dd576 

足球比赛涉及的因素非常繁多,我无法将所有因素都融入机器学习模型中。本文只是一个黑客想用数据尝试一些很酷的东西。本文的目标是:

  • 用机器学习来预测谁将赢得2018 FIFA世界杯的冠军;
  • 预测整个比赛的小组赛结果;
  • 模拟四分之一决赛、半决赛以及决赛。

这些目标代表了独一无二的现实世界里机器学习的预测问题,并将解决机器学习中的各种任务:数据集成、特征建模和结果预测。

数据

我采用了两个来自 Kaggle 的数据集,我们将使用自 1930 年第一届世界杯以来所有参赛队的历史赛事结果。

FIFA 排名是于 90 年代创建的,因此这里缺失很大一部分数据,所以我们使用历史比赛记录。点击以下链接获取所有数据 :

https://www.kaggle.com/martj42/international-football-results-from-1872-to-2017/data;

本文中主要使用的环境和工具有:jupyter notebook、numpy、pandas、seaborn、matplotlib 和 scikit-learn。

首先,我们要针对两个数据集做探索性分析,然后经过特征工程来选择与预测关联性最强的特征,还有数据处理,再选择一个机器学习模型,最后将模型配置到数据集上。

让我们开始动手吧!

首先,导入所需的代码库,并将数据集加载到数据框中:

这里写图片描述

导入代码库:

这里写图片描述

下一步是加载数据集。通过调用 world_cup.head() 和 results.head() ,务必将两个数据集都加载到数据框中,如下所示:

这里写图片描述

探索性分析

在分析了两组数据集后,所得的数据集包含了以往赛事的数据——这个新的(所得的)数据集对于分析和预测将来的赛事非常有帮助。

探索性分析和特征工程:需要建立与机器学习模型相关的特征,在任何数据科学的项目中,这部分工作都是最耗时的。

现在我们把目标差异和结果列添加到结果数据集:

这里写图片描述

检查一下新的结果数据框:

这里写图片描述

然后我们着手处理仅包含尼日利亚参加比赛的一组数据(这可以帮助我们集中找出哪些特征对一个国家有效,随后再扩展到参与世界杯的所有国家):

这里写图片描述

第一届世界杯于 1930 年举行。我们为年份创建一列,并选择所有 1930 年之后举行的比赛:

这里写图片描述

现在我们可以用图形表示这些年来尼日利亚队最普遍的比赛结果:

这里写图片描述

每个参加世界杯的国家的胜率是非常有帮助性的指标,我们可以用它来预测此次比赛最可能的结果。

比赛的举行地点无关紧要。

锁定参加世界杯的队伍

我们为所有参赛队伍创建一个数据框:

这里写图片描述

然后从该数据框中进一步筛选出从 1930 年起参加世界杯的队伍,并去掉重复的队伍:

这里写图片描述

为年份创建一列,去掉 1930 年之前的比赛,并去掉不会影响到比赛结果的数据列,比如 date(日期)、home_score(主场得分)、away_score(客场得分)、tournament(锦标赛)、city(城市)、country(国家)、goal_difference(目标差异)和 match_year(比赛年份):

这里写图片描述

为了简化模型的处理,我们修改一下预测标签。

如果主场队伍获胜,那么 winning_team(获胜队伍)一列显示“2”,如果平局则显示“1”,如果是客场队伍获胜则显示“0”:

这里写图片描述

通过设置哑变量(dummy variables),我们将 home_team(主场队伍)和away _team(客场队伍)从分类变量转换成连续的输入。

这时可以使用 pandas 的 get_dummies() 函数,它会将分类列替换成一位有效值(one-hot,由数字‘1’和‘0’组成),以便将它们加载到 Scikit-learn 模型中。

接下来,我们将数据按照 70% 的训练数据集和 30% 的测试数据集分成 X 集和 Y 集:

这里写图片描述

这里我们将使用分类算法:逻辑回归。这个算法的工作原理是什么?该算法利用逻辑函数来预测概率,从而可以测量出分类因变量与一个或多个自变量之间的关系。具体来说就是累积的逻辑分布。

换句话说,逻辑回归可以针对一组可以影响到结果的既定数据集(统计值)尝试预测结果(赢或输)。

在实践中这种方法的工作原理是:使用上述的两套“数据集”和比赛的实际结果,一次输入一场比赛到算法中。然后模型就会学习输入的每条数据对比赛结果产生了积极的效果还是消极的效果,以及影响的程度。

经过充分的(好)数据的训练后,就可以得到能够预测未来结果的模型,而模型的好坏程度取决于输入的数据。

让我们看看最终的数据框:

这里写图片描述

看起来很不错。现在我们将这些数据传递到算法中:

这里写图片描述

我们的模型子训练数据集的正确率为 57%,在测试数据集上的正确率为 55%。虽然结果不是很好,但是我们先继续下一步。

接下来我们建立需要配置到模型的数据框。

首先我们加载 2018 年 4 月 FIFA 排名数据和小组赛分组状况的数据集。由于世界杯比赛中没有“主场”和“客场”,所以我们把 FIFA 排名靠前的队伍作为“喜爱”的比赛队伍,将他们放到“home_teams”(主场队伍)一列。然后我们根据每个队伍的排名将他们加入到新的预测数据集中。下一步是创建默认变量,并部署机器学习模型。

2018 年 4 月 FIFA 排名数据:

https://us.soccerway.com/teams/rankings/fifa/?ICID=TN_03_05_01

小组赛分组状况的数据集:

https://fixturedownload.com/results/fifa-world-cup-2018

比赛结果预测

到这里你可能在想我们究竟什么时候开始预测啊?看了这么多代码和唠叨,究竟什么时候才给我们看预测结果?别着急,我们马上就要开始了……

将模型部署到数据集中

首先,我们将模型部署到小组赛中:

这里写图片描述

以下是小组赛的结果:

这里写图片描述

该模型的预测中出现了三场平局,并且获胜队伍会在葡萄牙和西班牙之间,且判定西班牙有更高的获胜概率。我使用该网站(https://ultra.zone/2018-FIFA-World-Cup-Group-Stage)模拟了小组赛。

以下是 16 强淘汰赛的模拟:

这里写图片描述 
这里写图片描述

模型预测的四分之一决赛——葡萄牙vs法国,巴西vs英格兰,西班牙vs阿根廷,德国vs比利时。

下面是结果预测:

这里写图片描述

半决赛的阵容是——葡萄牙vs巴西,德国vs阿根廷。

结果预测:

这里写图片描述

最后的冠军比赛是——巴西vs德国。

结果预测:

这里写图片描述

根据该模型,巴西将有可能获得本届世界杯的冠军。

进一步的研究和提高领域

为提高数据集的质量,可以利用 FIFA 的比赛数据评估每个球员的水平;

混淆矩阵可以帮助我们分析模型预测的哪场有误;

我们可以尝试将多个模型组合在一起,提高预测准确度。

写在最后

我们可以从很多方面的工作来提高该预测,接下来就让我们来看看真正的比赛结果是否如此啦。

点击此处获取完整的代码:

https://github.com/itsmuriuki/FIFA-2018-World-cup-predictions

这篇关于机器学习预测夺得世界杯冠军的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/736920

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

硬件基础知识——自学习梳理

计算机存储分为闪存和永久性存储。 硬盘(永久存储)主要分为机械磁盘和固态硬盘。 机械磁盘主要靠磁颗粒的正负极方向来存储0或1,且机械磁盘没有使用寿命。 固态硬盘就有使用寿命了,大概支持30w次的读写操作。 闪存使用的是电容进行存储,断电数据就没了。 器件之间传输bit数据在总线上是一个一个传输的,因为通过电压传输(电流不稳定),但是电压属于电势能,所以可以叠加互相干扰,这也就是硬盘,U盘

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在