Backtrader 量化回测实践(2)—— K线16主要形态定义(上)

2024-02-22 15:44

本文主要是介绍Backtrader 量化回测实践(2)—— K线16主要形态定义(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Backtrader 量化回测实践(2)—— K线16主要形态定义(上)

K线图形中的趋势线和价格走势能够反映市场的整体趋势,比如是否处于上涨或下跌趋势中。
用Backtrader做策略的时候,需要考虑K线形态,作为分析依据。K线的常用形态搜集整理如下:

1、光头光脚大阳线(极端强势);
2、光头光脚大阴线(极端弱势);
3、光头阳线(高价位强势线,先跌后涨型);
4、光头阴线(低价位弱势线,下跌抵抗型);
5、光脚阳线(高价位强势线,上升阻力型);
6、光脚阴线(低价位弱势线,先涨后跌型);
7、大阳线(较为强烈的买势信号,反转试探型);
8、大阴线(较为强烈的卖势信号,弹升试探型);
9、十字线(阳线,阴线);
10、T字线(阳线,阴线);
11、倒T字线(阳线,阴线);
12、一字线(阳线涨停,阴线跌停)。

以上一共16个,应该是常见的K线主要形态。
在策略中需要通过程序定义K线的形态,根据网上的介绍和定义,用dataframe分析。
取一个股票的数据导入到dataframe中,通过定义找到相应的形态并mplfinance绘图展示。

如果有错误,不妥之处欢迎留言,改进完善。

0.绘图

# signal是符合形态的日期列表,df是全量股票数据
# 只展示两个符合条件的图示
def mpfplot(signal,df) :counter = 0show_num = 2for i in signal:if counter < show_num :  # 以信号日期为中心前后10天的数据begin_date = i + datetime.timedelta(days=-10)end_date = i + datetime.timedelta(days=10)# 按时间段绘图df_candle = df.loc[(df.index>=begin_date.strftime("%Y-%m-%d")) & (df.index<=end_date.strftime("%Y-%m-%d"))]mpf.plot(df_candle , type='candle', title='Signal date: ' +i.strftime("%Y-%m-%d") ,figsize=(6,2))mpf.show()counter += 1counter = 0    for i in signal:if counter < show_num :      begin_date = i + datetime.timedelta(days=-10)end_date = i + datetime.timedelta(days=10)df_candle = df.loc[(df.index>=begin_date.strftime("%Y-%m-%d")) & (df.index<=end_date.strftime("%Y-%m-%d"))]# 按时间段数据print(df_candle[['open','high','low','close']])   counter += 1

1. 光头光脚大阳线

(1)代码
#1、光头光脚大阳线(极端强势)
# 开盘就是最低价,收盘就是最高价,收盘价大于开盘价
signal = []
for t_date in df.index :if df.loc[t_date,'open']==df.loc[t_date,'low'] and df.loc[t_date,'close']==df.loc[t_date,'high'] and df.loc[t_date,'close']>df.loc[t_date,'open']:signal.append(t_date)signal = []
for t_date in df.index :if df.loc[t_date,'open']==df.loc[t_date,'low'] and df.loc[t_date,'close']==df.loc[t_date,'high'] and df.loc[t_date,'close']>df.loc[t_date,'open']:signal.append(t_date)mpfplot(signal,df)            
(2)图示

在这里插入图片描述

(3)数据
             open   high    low  close
trade_date                            
2001-06-15  38.52  39.10  38.45  38.54
2001-06-18  38.50  38.88  37.60  37.66
2001-06-19  37.66  37.99  37.43  37.72
2001-06-20  37.72  37.90  37.11  37.19
2001-06-21  37.19  37.79  37.19  37.56
2001-06-22  36.80  38.20  36.80  38.00
2001-06-25  38.03  38.68  38.03  38.68
2001-06-26  38.78  38.84  38.50  38.80
2001-06-27  38.80  39.61  38.60  39.60
2001-06-28  39.60  39.95  38.65  39.29
2001-06-29  39.40  39.98  39.01  39.24
2001-07-02  39.10  39.15  38.37  38.52
2001-07-03  38.50  38.85  38.40  38.71
2001-07-04  38.71  38.90  38.56  38.71
2001-07-05  38.71  38.96  38.41  38.53open   high    low  close
trade_date                            
2003-11-03  10.08  10.18   9.97  10.12
2003-11-04  10.19  10.60  10.00  10.31
2003-11-05  10.34  10.52  10.25  10.46
2003-11-06  10.55  10.60  10.30  10.40
2003-11-07  10.39  10.39  10.01  10.18
2003-11-10  10.10  10.29  10.05  10.28
2003-11-11  10.25  10.48  10.25  10.48
2003-11-12  10.47  10.48  10.11  10.14
2003-11-13  10.13  10.20  10.01  10.09
2003-11-14  10.06  10.15   9.97  10.08
2003-11-17  10.03  10.12   9.98  10.08
2003-11-18  10.03  10.03   9.80   9.90
2003-11-19   9.80  10.00   9.76   9.94
2003-11-20  10.00  10.22   9.90  10.17
2003-11-21  10.18  10.24   9.98  10.01

2.光头光脚大阴线

(1)代码
#2、光头光脚大阴线(极端弱势)
# 开盘就是最高价,收盘就是最低价,开盘价大于收盘价
signal = []
for t_date in df.index :if df.loc[t_date,'open']==df.loc[t_date,'high'] and df.loc[t_date,'close']==df.loc[t_date,'low'] and df.loc[t_date,'open']>df.loc[t_date,'close']:signal.append(t_date)signal = []
for t_date in df.index :if df.loc[t_date,'open']==df.loc[t_date,'low'] and df.loc[t_date,'close']==df.loc[t_date,'high'] and df.loc[t_date,'close']>df.loc[t_date,'open']:signal.append(t_date)mpfplot(signal,df)
(2)图示

在这里插入图片描述

(3)数据
            open  high   low  close
trade_date                         
2004-06-14  6.14  6.18  5.99   6.02
2004-06-15  6.03  6.20  6.00   6.18
2004-06-16  6.18  6.28  6.08   6.17
2004-06-17  6.15  6.17  6.04   6.09
2004-06-18  6.06  6.08  6.00   6.07
2004-06-21  6.08  6.16  6.02   6.11
2004-06-22  6.11  6.21  6.09   6.19
2004-06-23  6.19  6.22  6.12   6.15
2004-06-24  6.15  6.15  6.09   6.09
2004-06-25  6.09  6.16  6.02   6.05
2004-06-28  6.05  6.18  5.95   6.08
2004-06-29  6.08  6.22  6.02   6.14
2004-06-30  6.14  6.17  6.10   6.12
2004-07-01  6.10  6.33  6.08   6.29
2004-07-02  6.32  6.36  6.21   6.31open  high   low  close
trade_date                         
2005-01-10  6.70  6.82  6.66   6.82
2005-01-11  6.86  6.88  6.75   6.80
2005-01-12  6.80  6.84  6.70   6.78
2005-01-13  6.77  6.81  6.68   6.75
2005-01-14  6.76  6.88  6.74   6.79
2005-01-17  6.77  6.77  6.55   6.61
2005-01-18  6.58  6.70  6.57   6.69
2005-01-19  6.72  6.74  6.65   6.73
2005-01-20  6.70  6.70  6.60   6.60
2005-01-21  6.59  6.83  6.45   6.80
2005-01-24  6.88  6.97  6.80   6.84
2005-01-25  6.85  7.00  6.77   7.00
2005-01-26  7.00  7.08  6.90   6.98
2005-01-27  6.97  6.97  6.80   6.83
2005-01-28  6.83  6.98  6.79   6.95

3. 阳线十字星

(1)代码
#3、阳线十字星
# 收盘价大于开盘价,K线体 / 上下影线的长度占比 < 1/3
signal = []
body_perc = 1 / 3 # K线体比上下影线,可调
shadow_perc = 1 / 4 # 上下影线比例,上下均衡,可调for t_date in df.index :k_body = df.loc[t_date,'close'] - df.loc[t_date,'open']k_shadow_up = df.loc[t_date,'high'] - df.loc[t_date,'close']k_shadow_down = df.loc[t_date,'open'] - df.loc[t_date,'low']k_shadow = abs(k_shadow_up) + abs(k_shadow_down)#上下影线的长度 占比 1/3 ,可以调整# 无影线的情况不考虑 ,避免T字形,要求上影线和下影线都要有一定长度,至少要总影线长度的1/4if k_shadow != 0 and k_shadow_up/k_shadow > shadow_perc and k_shadow_down/k_shadow > shadow_perc: if df.loc[t_date,'close']>df.loc[t_date,'open'] and k_body/k_shadow < body_perc:signal.append(t_date)mpfplot(signal,df)            
(2)图示

在这里插入图片描述

(3)数据
            open   high    low  close
trade_date                            
2000-01-04  29.50  30.38  29.30  30.10
2000-01-05  30.30  31.60  30.17  30.38
2000-01-06  30.30  31.88  30.10  31.60
2000-01-07  31.88  33.10  31.86  32.71
2000-01-10  33.10  33.50  32.67  32.81
2000-01-11  32.86  33.06  31.25  31.44
2000-01-12  31.05  32.00  30.60  30.90
2000-01-13  30.80  31.00  30.48  30.50
2000-01-14  30.40  30.70  29.98  30.01open   high    low  close
trade_date                            
2000-01-10  33.10  33.50  32.67  32.81
2000-01-11  32.86  33.06  31.25  31.44
2000-01-12  31.05  32.00  30.60  30.90
2000-01-13  30.80  31.00  30.48  30.50
2000-01-14  30.40  30.70  29.98  30.01
2000-01-17  29.99  30.66  29.61  30.66
2000-01-18  30.80  31.45  30.36  31.15
2000-01-19  31.30  33.28  31.30  32.58
2000-01-20  32.56  33.10  32.10  32.58
2000-01-21  32.60  32.99  32.22  32.65
2000-01-24  32.85  34.35  32.75  33.59
2000-01-25  34.00  34.20  32.65  32.70
2000-01-26  35.95  35.95  32.35  32.67
2000-01-27  32.70  32.88  31.52  31.95
2000-01-28  32.00  33.40  31.00  33.30

4.阴线十字星

(1)代码
#4、阴线十字星
# 收盘价小于开盘价,K线体 / 上下影线的长度占比 < 1/3
signal = []
body_perc = 1 / 3 # K线体比上下影线,可调
shadow_perc = 1 / 4 # 上下影线比例,上下均衡,可调for t_date in df.index :k_body = abs(df.loc[t_date,'close'] - df.loc[t_date,'open'])k_shadow_up = df.loc[t_date,'high'] - df.loc[t_date,'open']k_shadow_down = df.loc[t_date,'close'] - df.loc[t_date,'low']k_shadow = abs(k_shadow_up) + abs(k_shadow_down)#上下影线的长度 占比 1/3 ,可以调整# 无影线的情况不考虑 ,避免T字形,要求上影线和下影线都要有一定长度,至少要总影线长度的1/4if k_shadow != 0 and k_shadow_up/k_shadow > body_perc and k_shadow_down/k_shadow > body_perc: if df.loc[t_date,'open']>df.loc[t_date,'close'] and k_body/k_shadow < body_perc:signal.append(t_date)mpfplot(signal,df)
(2)图示

在这里插入图片描述

(3)数据
             open   high    low  close
trade_date                            
2000-01-04  29.50  30.38  29.30  30.10
2000-01-05  30.30  31.60  30.17  30.38
2000-01-06  30.30  31.88  30.10  31.60
2000-01-07  31.88  33.10  31.86  32.71
2000-01-10  33.10  33.50  32.67  32.81
2000-01-11  32.86  33.06  31.25  31.44
2000-01-12  31.05  32.00  30.60  30.90
2000-01-13  30.80  31.00  30.48  30.50
2000-01-14  30.40  30.70  29.98  30.01
2000-01-17  29.99  30.66  29.61  30.66
2000-01-18  30.80  31.45  30.36  31.15
2000-01-19  31.30  33.28  31.30  32.58
2000-01-20  32.56  33.10  32.10  32.58
2000-01-21  32.60  32.99  32.22  32.65open   high    low  close
trade_date                            
2000-03-20  29.00  29.98  29.00  29.90
2000-03-21  29.90  30.78  29.90  30.14
2000-03-22  30.12  30.40  30.08  30.17
2000-03-23  30.16  30.28  29.80  30.02
2000-03-24  30.05  31.09  30.05  30.65
2000-03-27  30.80  31.17  30.28  30.82
2000-03-28  31.01  31.30  30.58  30.86
2000-03-29  30.95  31.03  30.00  30.56
2000-03-30  30.61  30.80  30.35  30.48
2000-03-31  30.50  30.52  30.00  30.15
2000-04-03  30.15  30.97  30.00  30.20
2000-04-04  30.01  30.15  29.60  29.80
2000-04-05  29.80  30.30  29.80  30.00
2000-04-06  30.05  30.50  30.00  30.36
2000-04-07  30.40  30.50  30.10  30.19

5.阳线T字

(1)代码
#5、阳线T字
# 收盘价等于最高价,收盘价大于开盘价,K线体 / 下影线的长度占比 < 1/4
signal = []
body_perc = 1 / 3 # K线体比上下影线,可调
shadow_perc = 1 / 4 # 上下影线比例,上下均衡,可调for t_date in df.index :k_body = df.loc[t_date,'close'] - df.loc[t_date,'open']k_shadow_down = df.loc[t_date,'open'] - df.loc[t_date,'low']# 下影线的长度 占比 1/4 ,可以调整# 无影线的情况不考虑 if k_shadow_down != 0 and df.loc[t_date,'close'] == df.loc[t_date,'high']: if df.loc[t_date,'close']>df.loc[t_date,'open'] and k_body/k_shadow_down < shadow_perc:signal.append(t_date)mpfplot(signal,df)            
(2)图示

在这里插入图片描述

(3)数据
             open   high    low  close
trade_date                            
2008-04-14  24.17  24.17  22.60  22.80
2008-04-15  22.60  23.80  21.89  23.70
2008-04-16  23.70  25.00  23.20  24.45
2008-04-17  24.18  25.35  23.86  24.23
2008-04-18  24.18  24.81  23.17  23.45
2008-04-21  25.48  25.48  23.64  24.06
2008-04-22  23.71  24.78  22.70  24.55
2008-04-23  24.70  26.32  23.98  26.11
2008-04-24  28.50  28.72  27.50  28.72
2008-04-25  28.50  29.30  28.03  28.39
2008-04-28  27.81  28.45  26.98  27.65
2008-04-29  27.38  27.70  26.90  27.02
2008-04-30  27.19  28.55  27.19  28.45

6.阴线T字

(1)代码
#6、阴线T字
# 开盘价等于最高价,开盘价大于收盘价,K线体 / 下影线的长度占比 < 1/4
signal = []
body_perc = 1 / 3 # K线体比上下影线,可调
shadow_perc = 1 / 4 # 上下影线比例,上下均衡,可调for t_date in df.index :k_body = abs(df.loc[t_date,'close'] - df.loc[t_date,'open'])k_shadow_down = df.loc[t_date,'close'] - df.loc[t_date,'low']# 下影线的长度 占比 1/4 ,可以调整# 无影线的情况不考虑 if k_shadow_down != 0 and df.loc[t_date,'open'] == df.loc[t_date,'high']: if df.loc[t_date,'open']>df.loc[t_date,'close'] and k_body/k_shadow_down < shadow_perc:signal.append(t_date)mpfplot(signal,df)
(2)图示

在这里插入图片描述

(3)数据
             open   high    low  close
trade_date                            
2002-06-14  13.34  13.56  13.24  13.42
2002-06-17  13.25  13.42  13.25  13.36
2002-06-18  13.36  13.52  13.34  13.51
2002-06-19  13.60  13.65  13.30  13.32
2002-06-20  13.30  13.47  13.30  13.39
2002-06-21  13.41  14.00  13.35  13.80
2002-06-24  15.18  15.18  14.61  15.16
2002-06-25  15.18  15.18  14.60  14.63
2002-06-26  14.62  14.70  14.31  14.43
2002-06-27  14.45  14.80  14.43  14.58
2002-06-28  14.60  15.70  14.40  15.68
2002-07-01  15.68  15.90  15.30  15.42
2002-07-02  15.40  15.53  15.18  15.50
2002-07-03  15.55  15.78  15.33  15.46
2002-07-04  15.47  15.64  15.15  15.17open   high    low  close
trade_date                            
2002-06-25  15.18  15.18  14.60  14.63
2002-06-26  14.62  14.70  14.31  14.43
2002-06-27  14.45  14.80  14.43  14.58
2002-06-28  14.60  15.70  14.40  15.68
2002-07-01  15.68  15.90  15.30  15.42
2002-07-02  15.40  15.53  15.18  15.50
2002-07-03  15.55  15.78  15.33  15.46
2002-07-04  15.47  15.64  15.15  15.17
2002-07-05  15.17  15.17  14.95  15.13
2002-07-08  15.20  15.40  15.16  15.30
2002-07-09  15.45  15.50  15.23  15.28
2002-07-10  15.24  15.26  14.78  14.86
2002-07-11  14.83  14.96  14.70  14.83
2002-07-12  14.80  14.99  14.75  14.87
2002-07-15  14.85  14.85  14.70  14.72

7.阳线倒T字

(1)代码
#7、阳线倒T字
# 开盘价等于最低价,收盘价大于开盘价,K线体 / 上影线的长度占比 < 1/4
signal = []
body_perc = 1 / 3 # K线体比上下影线,可调
shadow_perc = 1 / 4 # 上下影线比例,上下均衡,可调for t_date in df.index :k_body = df.loc[t_date,'close'] - df.loc[t_date,'open']k_shadow_up = df.loc[t_date,'high'] - df.loc[t_date,'close']# 上影线的长度 占比 1/4 ,可以调整# 无影线的情况不考虑 if k_shadow_up != 0 and df.loc[t_date,'open'] == df.loc[t_date,'low']: if df.loc[t_date,'close']>df.loc[t_date,'open'] and k_body/k_shadow_down < shadow_perc:signal.append(t_date)mpfplot(signal,df)
(2)图示

在这里插入图片描述

(3)数据
             open   high    low  close
trade_date                            
2000-03-13  31.00  32.00  30.71  31.31
2000-03-14  31.00  31.00  30.00  30.51
2000-03-15  30.56  30.80  30.18  30.21
2000-03-16  30.19  30.20  28.90  29.16
2000-03-17  29.00  29.60  28.88  29.57
2000-03-20  29.00  29.98  29.00  29.90
2000-03-21  29.90  30.78  29.90  30.14
2000-03-22  30.12  30.40  30.08  30.17
2000-03-23  30.16  30.28  29.80  30.02
2000-03-24  30.05  31.09  30.05  30.65
2000-03-27  30.80  31.17  30.28  30.82
2000-03-28  31.01  31.30  30.58  30.86
2000-03-29  30.95  31.03  30.00  30.56
2000-03-30  30.61  30.80  30.35  30.48
2000-03-31  30.50  30.52  30.00  30.15open   high    low  close
trade_date                            
2000-03-27  30.80  31.17  30.28  30.82
2000-03-28  31.01  31.30  30.58  30.86
2000-03-29  30.95  31.03  30.00  30.56
2000-03-30  30.61  30.80  30.35  30.48
2000-03-31  30.50  30.52  30.00  30.15
2000-04-03  30.15  30.97  30.00  30.20
2000-04-04  30.01  30.15  29.60  29.80
2000-04-05  29.80  30.30  29.80  30.00
2000-04-06  30.05  30.50  30.00  30.36
2000-04-07  30.40  30.50  30.10  30.19
2000-04-10  30.25  31.28  30.25  31.08
2000-04-11  31.10  31.28  30.63  30.84
2000-04-12  30.98  31.09  30.32  30.50
2000-04-13  30.50  30.94  30.48  30.73
2000-04-14  30.79  31.89  30.75  31.42

8.阴线倒T字

(1)代码
#8、阴线倒T字
# 收盘价等于最低价,开盘价大于收盘价,K线体 / 上影线的长度占比 < 1/4
signal = []
body_perc = 1 / 3 # K线体比上下影线,可调
shadow_perc = 1 / 4 # 上下影线比例,上下均衡,可调for t_date in df.index :k_body = abs(df.loc[t_date,'close'] - df.loc[t_date,'open'])k_shadow_up = df.loc[t_date,'high'] - df.loc[t_date,'open']# 上影线的长度 占比 1/4 ,可以调整# 无影线的情况不考虑 if k_shadow_up != 0 and df.loc[t_date,'close'] == df.loc[t_date,'low']: if df.loc[t_date,'open']>df.loc[t_date,'close'] and k_body/k_shadow_up < shadow_perc:signal.append(t_date)mpfplot(signal,df)
(2)图示

在这里插入图片描述

(3)数据
              open    high     low   close
trade_date                                
2021-01-22  295.08  299.91  292.58  295.56
2021-01-25  295.57  316.33  293.20  315.69
2021-01-26  315.69  315.71  305.10  305.78
2021-01-27  302.90  302.90  287.00  292.58
2021-01-28  288.23  292.00  283.00  286.00
2021-01-29  290.00  295.14  288.78  291.14
2021-02-01  293.01  299.87  292.29  292.29
2021-02-02  292.00  304.33  291.90  304.12
2021-02-03  303.80  309.00  301.12  308.75
2021-02-04  306.00  316.80  305.01  313.60
2021-02-05  314.01  330.00  314.00  319.76
2021-02-08  324.00  330.50  313.80  320.00
2021-02-09  322.00  330.00  317.86  329.50
2021-02-10  333.00  345.68  332.50  342.65

这篇关于Backtrader 量化回测实践(2)—— K线16主要形态定义(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/735722

相关文章

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

关于@RequestParam的主要用法详解

《关于@RequestParam的主要用法详解》:本文主要介绍关于@RequestParam的主要用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 基本用法2. 默认值3. 可选参数4. 绑定到对象5. 绑定到集合或数组6. 绑定到 Map7. 处理复杂类

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定

Ubuntu中Nginx虚拟主机设置的项目实践

《Ubuntu中Nginx虚拟主机设置的项目实践》通过配置虚拟主机,可以在同一台服务器上运行多个独立的网站,本文主要介绍了Ubuntu中Nginx虚拟主机设置的项目实践,具有一定的参考价值,感兴趣的可... 目录简介安装 Nginx创建虚拟主机1. 创建网站目录2. 创建默认索引文件3. 配置 Nginx4

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co