There will be “7“ later: Interpretation of next-generation Wi-Fi technology

2024-02-20 16:44

本文主要是介绍There will be “7“ later: Interpretation of next-generation Wi-Fi technology,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

With the Wi-Fi Alliance announcing the launch of Wi-Fi 7-related certifications, we can also start talking about the new successor to Wi-Fi 6 three years after its launch. What is Wi-Fi 7? What benefits does it bring? These questions about Wi-Fi 7 will be answered in this article.

A quick look at Wi-Fi 7 highlights

Literally, Wi-Fi 7 is a new generation of Wi-Fi technology, the successor to Wi-Fi 6, based on the latest revision of the IEEE 802.11 standard, 802.11be. Compared with Wi-Fi 6, which focuses on stability, Wi-Fi 7 introduces many new technologies. Simply put, it mainly includes greater bandwidth and lower latency.

Accelerate to the ultimate speed

Every time a new Wi-Fi technology is released, "speed improvement" is always a topic that cannot be avoided. Wi-Fi 7 can reach a maximum link speed of 46Gbps under theoretical conditions, which is an increase of approximately 380% compared to the 9.6Gbps limit speed of Wi-Fi 6.

The reason why Wi-Fi 7 can achieve this is due to its major breakthroughs in channel width, number of spatial streams and QAM modulation technology.

Channel

Since the launch of Wi-Fi 6E, an improved version of Wi-Fi 6, many countries have approved Wi-Fi to use the 6GHz unlicensed frequency band. Compared with the 2.4GHz and 5GHz commonly used by Wi-Fi before, the frequency is significantly higher. Higher frequency radio waves can complete more cycle changes per unit of time, thereby carrying more information in the same time, which means faster Wi-Fi speeds.

In addition to speed, high frequency bands also mean greater bandwidth. Theoretically, the 6GHz band can provide 5925-7125 MHz, which is a full 1200MHz continuous bandwidth.

We can think of bandwidth as road width. The wider the road (the greater the bandwidth), not only can the router choose more lanes (passages), but each lane (the bandwidth that the router can occupy) can also be expanded. In the past, 2.4GHz only supported three non-overlapping 20MHz and one non-overlapping 40MHz bandwidth, while 5GHz can additionally support a larger three non-overlapping 80MHz and one non-overlapping 160MHz.

Wi-Fi 7 can easily divide into 6 non-overlapping 80MHz and 3 non-overlapping 160MHz, and the "lane" is also doubled to 320MHz. Wi-Fi 7 also allows the combination of non-contiguous spectrum, such as combining the 5GHz low-frequency 200MHz and the high-frequency 125MHz into a larger 320MHz bandwidth, further increasing the use range of the 320MHz bandwidth.

It should be admitted that higher frequency is not always better. The higher the frequency, the shorter the wavelength, and the lower the ability to penetrate walls. In addition, setting a narrower channel bandwidth in daily life can also help avoid neighbor Wi-Fi interference. Even so, changes in channel frequency are the basis for speed improvement. You can choose appropriately according to the scenario. One is better than the other.

Spatial Streaming and MU-MIMO

In layman's terms, spatial flow refers to "how many real antennas the router has." Therefore, supporting more spatial streams means more antennas, which can support higher speeds.

WIFI 7 PRODUCT --DR9274-DB QCN9274 CHIP

Features

■ Qualcomm Atheros QCN6274;

■ Qualcomm Atheros QCN9274 for Industrial Grade;

■ Maxim Tx power 20dBm per chain;

■ 2×2 2.4GHz MU-MIMO, up to 1376Mbps physical data rate;

■ 2×2 5GHz MU-MIMO, up to 5765Mbps physical data rate;

■ Support up to 4096-QAM;

■ M.2 connector;

■ PCI Express 3 .0 Interface

Applications

■ Security Surveillance

■ Commercial radio coverage

■ Hotel Wireless application

■ Forest fire protection engineering

■ Country coverage

■ Some special scene application

Attach:sales4@wallystech.com

这篇关于There will be “7“ later: Interpretation of next-generation Wi-Fi technology的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/728863

相关文章

LLVM入门2:如何基于自己的代码生成IR-LLVM IR code generation实例介绍

概述 本节将通过一个简单的例子来介绍如何生成llvm IR,以Kaleidoscope IR中的例子为例,我们基于LLVM接口构建一个简单的编译器,实现简单的语句解析并转化为LLVM IR,生成对应的LLVM IR部分,代码如下,文件名为toy.cpp,先给出代码,后面会详细介绍每一步分代码: #include "llvm/ADT/APFloat.h"#include "llvm/ADT/S

Python安装llama库出错“metadata-generation-failed”

Python安装llama库出错“metadata-generation-failed” 1. 安装llama库时出错2. 定位问题1. 去官网下载llama包 2.修改配置文件2.1 解压文件2.2 修改配置文件 3. 本地安装文件 1. 安装llama库时出错 2. 定位问题 根据查到的资料,发现时llama包中的execfile函数已经被下线了,需要我们手动修改代码后

【鸿蒙HarmonyOS NEXT】页面之间相互传递参数

【鸿蒙HarmonyOS NEXT】页面之间相互传递参数 一、环境说明二、页面之间相互传参 一、环境说明 DevEco Studio 版本: API版本:以12为主 二、页面之间相互传参 说明: 页面间的导航可以通过页面路由router模块来实现。页面路由模块根据页面url找到目标页面,从而实现跳转。通过页面路由模块,可以使用不同的url访问不同的页面,包括跳转到U

leetcode#496. Next Greater Element I

题目 You are given two arrays (without duplicates) nums1 and nums2 where nums1’s elements are subset of nums2. Find all the next greater numbers for nums1’s elements in the corresponding places of nums

OpenAI澄清:“GPT Next”不是新模型。

不,”GPT Next” 并不是OpenAI的下一个重要项目。 本周早些时候,OpenAI 日本业务的负责人长崎忠男在日本 KDDI 峰会上分享了一场演讲,似乎在暗示一个名为 “GPT Next” 的新模型即将出现。 但OpenAI的一位发言人已向Mashable证实,幻灯片中用引号括起来的”GPT Next”一词只是一个假设性占位符,旨在表明OpenAI的模型如何随着时间呈指数级进化。发言人

AI跟踪报道第55期-新加坡内哥谈技术-本周AI新闻: GPT NEXT (x100倍)即将在2024推出

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/ 点击下面视频观看在B站本周AI更新: B 站 链接 观看: 本周AI

【鸿蒙HarmonyOS NEXT】调用后台接口及List组件渲染

【鸿蒙HarmonyOS NEXT】调用后台接口及List组件渲染 一、环境说明二、调用后台接口及List组件渲染三、总结 一、环境说明 DevEco Studio 版本: API版本:以12为主 二、调用后台接口及List组件渲染 后台接口及返回数据分析 JSON数据格式如下: {"code": 0,"data": {"total": 6,"pageSize"

从应用内跳转至外部浏览器 - 鸿蒙 HarmonyOS Next

从应用内跳转至外部浏览器,基于 Want 来实现,同时也可以通过其方式尝试跳转至其它系统模块,具体可参考如下 code : 方法调用 // 调用pushOutsideWeb(controller, url) 方法实现 import { common, contextConstant, Want } from '@kit.AbilityKit';import { HintMessage

【鸿蒙】HarmonyOS NEXT星河入门到实战1-开发环境准备

目录 一、达成目标  二、鸿蒙开发环境准备 2.1 开发者工作下载 2.2 解压安装 2.3 运行配置安装node.js和SDK 2.4 开始创建第一个项目 2.5 预览 2.5.1 预览遇到的问题(报错)  2.5.2 修改内容查看预览 三、备用下载地址(如果下载是4.X版本的就需要操作此步) 前言:纯国产的系统,学习一下,零基础,从入门到实战,记录学习过

Show,Attend and Tell: Neural Image Caption Generation with Visual Attention

简单的翻译阅读了一下 Abstract 受机器翻译和对象检测领域最新工作的启发,我们引入了一种基于注意力的模型,该模型可以自动学习描述图像的内容。我们描述了如何使用标准的反向传播技术,以确定性的方式训练模型,并通过最大化变分下界随机地训练模型。我们还通过可视化展示了模型如何能够自动学习将注视固定在显着对象上,同时在输出序列中生成相应的单词。我们通过三个基准数据集(Flickr9k,Flickr