torchvision.transforms模块功能介绍

2024-02-20 09:50

本文主要是介绍torchvision.transforms模块功能介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

torchvision.transforms模块介绍

torchvision.transforms模块是PyTorch进行图片预处理的模块。

一、 图片数据读取

对图像进行处理的第一步就是读取图片。一般来说,图片读入后以numpy.ndarray格式和PILImage方式。这里简单介绍几种图片的读取方式。
请添加图片描述

1. PIL读取和显示图片

PIL通过Image模块读入图片。

from PIL import Imagedir_path = r"C:\Users\用户名\Pictures\test.jpg"
img_plt = Image.open(dir_path)
>>>print(img_plt)
output: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=4000x2250 at 0x20319DB3240>
>>>plt.imshow(img_plt)

在这里插入图片描述

2. matplotlib.pyplot读取图片

import matplotlib.pyplot as pltdir_path = r"C:\Users\用户名\Pictures\test.jpg"
img_plt = plt.imread(dir_path)
>>>print(type(img_plt))
output: <class 'numpy.ndarray'>
>>>plt.imshow(img_plt)

在这里插入图片描述

二、对PIL.Image图像的变换

1. torchvision.transforms中对PIL.Image变换的类

  1. class torchvision.transforms.CenterCrop(size)
    将给定的 PIL.Image 进行中心切割,得到给定的size,size可以是tuple(target_height, target_width)。size也可以是Integer,这种情况下切出来的是正方形。size大小可以超过图片尺寸,
img_trans = transforms.CenterCrop((3000, 4000))(img_plt)
plt.imshow(img_trans)

在这里插入图片描述
2. class torchvision.transforms.RandomCrop(size, padding=0)
切割中心点的位置随机选取。size 可以是tuple也可以是Integer。size大小不能超过图片尺寸。

img_trans = transforms.RandomCrop((300, 400))(img_plt)
plt.imshow(img_trans)

在这里插入图片描述
3. class torchvision.transforms.RandomHorizontalFlip
随机水平翻转给定的PIL.Image,概率为0.5。即:一半的概率翻转,一半的概率不翻转。

img_trans = transforms.RandomHorizontalFlip(0.5)(img_plt)
plt.imshow(img_trans)

在这里插入图片描述
4. class torchvision.transforms.RandomSizedCrop(size, interpolation=2)
先将给定的 PIL.Image 随机切,然后再resize成给定的size大小。

img_trans = transforms.RandomSizedCrop((200, 300))(img_plt)
plt.imshow(img_trans)

在这里插入图片描述
5. class torchvision.transforms.Pad(padding, fill=0)
将给定的PIL.Image的所有边用给定的pad value填充。 padding:要填充多少像素 fill:用什么值填充.

img_trans = transforms.Pad(padding=50, fill=(150, 150, 0))(img_plt)
plt.imshow(img_trans)

在这里插入图片描述

三、 转换为Tensor

  1. class torchvision.transforms.ToTensor
    把一个取值范围是[0,255]的PIL.Image或者shape为(H,W,C)的numpy.ndarray,转换成形状为[C,H,W],取值范围是[0,1.0]的torch.FloadTensor
transforms.ToTensor()(img_trans)
output:tensor([[[0.5882, 0.5882, 0.5882,  ..., 0.5882, 0.5882, 0.5882],[0.5882, 0.5882, 0.5882,  ..., 0.5882, 0.5882, 0.5882],[0.5882, 0.5882, 0.5882,  ..., 0.5882, 0.5882, 0.5882],...,[0.5882, 0.5882, 0.5882,  ..., 0.5882, 0.5882, 0.5882],[0.5882, 0.5882, 0.5882,  ..., 0.5882, 0.5882, 0.5882],[0.5882, 0.5882, 0.5882,  ..., 0.5882, 0.5882, 0.5882]],[[0.5882, 0.5882, 0.5882,  ..., 0.5882, 0.5882, 0.5882],[0.5882, 0.5882, 0.5882,  ..., 0.5882, 0.5882, 0.5882],[0.5882, 0.5882, 0.5882,  ..., 0.5882, 0.5882, 0.5882],...,[0.5882, 0.5882, 0.5882,  ..., 0.5882, 0.5882, 0.5882],[0.5882, 0.5882, 0.5882,  ..., 0.5882, 0.5882, 0.5882],[0.5882, 0.5882, 0.5882,  ..., 0.5882, 0.5882, 0.5882]],[[0.0000, 0.0000, 0.0000,  ..., 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000,  ..., 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000,  ..., 0.0000, 0.0000, 0.0000],...,[0.0000, 0.0000, 0.0000,  ..., 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000,  ..., 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000,  ..., 0.0000, 0.0000, 0.0000]]])

四、对Tensor进行变换

  1. class torchvision.transforms.Normalize(mean, std)
    给定均值:(R,G,B) 方差:(R,G,B),将会把Tensor正则化。即:Normalized_image=(image-mean)/std。

这篇关于torchvision.transforms模块功能介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/727826

相关文章

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Android实现悬浮按钮功能

《Android实现悬浮按钮功能》在很多场景中,我们希望在应用或系统任意界面上都能看到一个小的“悬浮按钮”(FloatingButton),用来快速启动工具、展示未读信息或快捷操作,所以本文给大家介绍... 目录一、项目概述二、相关技术知识三、实现思路四、整合代码4.1 Java 代码(MainActivi

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t