rtt的io设备框架面向对象学习-pin设备

2024-02-19 23:52

本文主要是介绍rtt的io设备框架面向对象学习-pin设备,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

        • 1.pin设备基类
        • 2.pin设备基类的子类
        • 3.初始化/构造流程
          • 3.1设备驱动层
          • 3.2 设备驱动框架层
          • 3.3 设备io管理层
        • 4.总结
        • 5.gpio的pin映射
        • 6.使用

1.pin设备基类

此层处于设备驱动框架层。

在/ components / drivers / include / drivers 下的pin.h定义了如下pin设备基类
struct rt_device_pin
{
struct rt_device parent;
const struct rt_pin_ops *ops;
};

pin设备基类的方法定义如下
struct rt_pin_ops
{
void (*pin_mode)(struct rt_device *device, rt_base_t pin, rt_uint8_t mode);
void (*pin_write)(struct rt_device *device, rt_base_t pin, rt_uint8_t value);
rt_int8_t (*pin_read)(struct rt_device *device, rt_base_t pin);
rt_err_t (*pin_attach_irq)(struct rt_device *device, rt_base_t pin,
rt_uint8_t mode, void (*hdr)(void *args), void *args);
rt_err_t (*pin_detach_irq)(struct rt_device *device, rt_base_t pin);
rt_err_t (*pin_irq_enable)(struct rt_device *device, rt_base_t pin, rt_uint8_t enabled);
0rt_base_t (*pin_get)(const char *name);
};

抽象出来所有pin设备的共性成为pin设备基类的方法。

pin设备比较特殊,它在/ components / drivers / misc / pin.c实例化了pin设备基类对象如下:
static struct rt_device_pin _hw_pin;

2.pin设备基类的子类

无。pin设备比较特殊,没有pin设备基类的子类。

3.初始化/构造流程

以stm32为例,从设备驱动层、设备驱动框架层到设备io管理层从下到上的构造/初始化流程如下

3.1设备驱动层

此层是bsp层,pin设备比较特殊,没有定义驱动层的pin设备对象,在设备驱动层是直接定义了pin设备基类的方法,用以重写在/ components / drivers / misc / pin.c实例化了pin设备基类对象_hw_pin的基类方法。

在/ bsp / stm32 / libraries / HAL_Drivers / drivers 下drv_gpio.c的rt_hw_pin_init中开启stm32的pin设备的初始化/构造流程——并重写了pin设备基类对象的ops方法:
static const struct rt_pin_ops _stm32_pin_ops =
{
stm32_pin_mode,
stm32_pin_write,
stm32_pin_read,
stm32_pin_attach_irq,
stm32_pin_dettach_irq,
stm32_pin_irq_enable,
stm32_pin_get,
};

然后调用/ components / drivers / misc 下rt_pin.c中rt_device_pin_register函数来初始化pin设备基类对象。

3.2 设备驱动框架层

rt_device_pin_register是pin设备驱动框架层的入口,开启pin设备基类的构造/初始化流程。
其主要是重写设备基类对象的方法,如下

/ components / drivers / misc 下的pin.c实现了设备驱动框架层接口。
重写pin设备基类的父类设备基类的方法如下
_hw_pin.parent.init = RT_NULL; _hw_pin.parent.open = RT_NULL; _hw_pin.parent.close = RT_NULL; _hw_pin.parent.read = _pin_read; _hw_pin.parent.write = _pin_write; _hw_pin.parent.control = _pin_control;

同时,重写pin设备基类的方法。
_hw_pin.ops = ops;

并最终调用设备基类的初始化/构造函数rt_device_register。

3.3 设备io管理层

在/ components / drivers / core 下的device.c中实现了rt_device_register,它是io管理层的入口。
它将设备框架层pin设备基类对象放到对象容器里管理。

4.总结

整个设备对象的构造/初始化流程其实是对具体设备对象也就是结构体进行初始化赋值——它这个结构体是包含一个个的结构体——模拟的是面向对象的继承机制。跟套娃似的,层层进行初始化。这样的好处是什么?每层有每层的初始化(构造)函数,就模拟了面向对象的构造函数——按照先调用子类构造/初始化函数,再调用父类的构造/初始化函数方式——其实也是子类构造/初始化函数调用父类构造/初始化函数的流程,来完成设备对象的初始化/构造。最终放到对象容器里来管理。
这样的好处是可扩展,如搭积木似的,也是对内封闭,对外开放,扩展性好,模拟的是面向对象的继承多态机制。

其实每个类的注册函数模拟的是面向对象的构造函数。

5.gpio的pin映射

pin设备gpio计算原理,由设备驱动层即各个bsp根据各自芯片厂家gpio的寄存器地址映射规则,来实现pin设备基类的方法。

实例
以stm32为例,在/ bsp / stm32 / libraries / HAL_Drivers / drivers 下drv_gpio.c定义了如下宏

#define PIN_NUM(port, no) (((((port)&0xFu) << 4) | ((no)&0xFu)))
#define PIN_PORT(pin) ((uint8_t)(((pin) >> 4) & 0xFu))
#define PIN_NO(pin) ((uint8_t)((pin)&0xFu))

PIN_NUM是计算引脚编号,和芯片引脚号无关,自己抽象的,其实是对芯片引脚端口和引脚号的映射或者说再编码或者说降维(多维变低维)的概念。
PIN_PORT是根据引脚编号反推出芯片引脚端口(如PA~PZ),和芯片手册相一致。
PIN_NO是根据引脚编号反推出芯片引脚号(如推算Px.y中的y),和芯片手册相一致。

stm32_pin_get就通过调用PIN_NUM宏实现了芯片端口和引脚号到rtt的引脚编号的转换,其原理就是
PA.0 映射为 引脚编号0
PA.1 映射为 引脚编号1

PB.0 映射为 引脚编号16

PZ.0 映射为 引脚编号176

下面这两个是将引脚编号重新解算为stm32的寄存器地址——根据芯片手册找到正确的映射公式,仅取如下宏举例
#define PIN_STPORT(pin) ((GPIO_TypeDef *)(GPIOA_BASE + (0x400u * PIN_PORT(pin))))
#define PIN_STPIN(pin) ((uint16_t)(1u << PIN_NO(pin)))

PIN_STPORT宏解算出端口的寄存器地址
PIN_STPIN宏解算出对应引脚号的寄存器值

有了寄存器地址,那么设置gpio的模式,高低电平就不再话下,如此这般,这般如此,不再赘诉。

6.使用

文档

这篇关于rtt的io设备框架面向对象学习-pin设备的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/726400

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个