gem5学习(22):经典内存系统的一致性——Classic Memory System coherence

本文主要是介绍gem5学习(22):经典内存系统的一致性——Classic Memory System coherence,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

官网教程:gem5: Classic memory system coherence

M5 2.0b4引入了一个经过大量重写和简化的缓存模型,包括一个新的一致性协议。一致性协议是用于确保多个缓存之间的数据一致性的规则和机制。这意味着在多个缓存中存储的数据将保持一致,以避免数据不一致的问题。

(在此之前的 M5 2.0 版本之前,缓存模型已经进行了修补,以适应引入的新内存系统。然而,旧的缓存模型并没有重新编写以充分利用新内存系统所提供的功能。因此,在 2.0beta 版本中,对缓存模型进行了彻底的重写,以使其能够更好地利用新内存系统的功能。)

新一致性协议的关键特性是它可以与多样化的缓存层次结构(多个层次上的多个缓存)配合工作。在计算系统中,通常会使用多个层次的缓存来加速数据访问。每个层次的缓存可以存储不同级别的数据,例如 L1 缓存、L2 缓存等。旧协议将缓存之间的数据共享限制在一个总线上,这就意味着只有通过总线才能进行数据的交互和传输。

在现实世界中,系统架构对协议可以适应的缓存数量或配置有限制。由于系统的多样性和复杂性,设计一个在任意配置下都既适用又高效的协议是不切实际的。因此,在设计一致性协议时,我们需要在现实性和可配置性方面做出一些妥协。

这意味着我们可能无法找到一种通用的协议,适用于所有可能的系统配置。相反,我们采取了一种折衷的方法,以满足在(几乎)任意配置上工作的需求。这意味着协议在大多数常见的系统配置下都能有效运行,但在某些特殊或定制的配置下可能会存在限制或不够高效。

尽管如此,我们的目标是确保协议对于研究系统行为的其他方面是足够的。这意味着协议能够满足一致性方面的基本需求,并在常见的系统配置下表现出良好的性能和可靠性。然而,对于专门研究一致性的研究人员来说,他们可能更倾向于使用特定的协议来替换默认的一致性机制,以满足其研究的特定需求。

该协议是一个MOESI(Modified, Owned, Exclusive, Shared, Invalid)嗅探协议,不强制实施包含性(Inclusion)。MOESI是一种常见的缓存一致性协议,用于管理多级缓存系统中的数据一致性。它定义了不同状态来表示缓存中数据的状态,包括被修改(Modified)、被拥有(Owned)、独占(Exclusive)、共享(Shared)和无效(Invalid)。

在一个CMP(Chip-level Multiprocessing)配置中,如果有多个L1缓存,它们的总容量是共享的L2缓存容量的显著一部分。在这种情况下,强制实施包含性可能非常低效。包含性是指较低级别缓存中的数据拷贝也存在于较高级别缓存中,以确保数据的一致性。

来自较高级别缓存(靠近CPU的缓存)的请求按预期的方式向内存传播:当L1缓存发生缺失时,它会在本地L1/L2总线上广播该缺失请求,并被其他L1缓存进行嗅探。如果没有响应,那么L2缓存将提供服务。如果L2中的请求也未命中,经过一段延迟后(通常等于L2的命中延迟),L2将在其内存侧总线上发出请求,可能被其他L2缓存进行嗅探,然后发送到L3缓存或内存。

然而,逐级向上传播嗅探请求可能会引发大量难以解决的竞争条件。实际系统通常不会按照这种方式进行处理。相反,通常希望在L2总线上执行单个嗅探操作,以告知整个L1/L2层次结构中该数据块的状态。为了实现这一点,可以采用多种方法:

  1. 只嗅探L2缓存,但强制实施包含性,以便L2具有关于L1缓存的所有所需信息。这种方法可以确保L2缓存具有关于L1缓存的完整状态信息,但可能会导致配置上的麻烦,需要根据上层缓存的数量、大小和配置来确定较低级别缓存的标记大小。
  2. 在L2上保留一组额外的标记,以便可以同时嗅探它们(如Compaq Piranha)。这种方法在层次结构不太深的情况下是合理的,但需要在设计中考虑额外的标记,并根据上层缓存的配置来确定标记的大小。
  3. 并行嗅探L1和L2缓存,特别是当它们都位于同一芯片上时。这种方法在一些处理器架构中被使用,如Intel的Pentium Pro。然而,为了实现这种并行嗅探,需要在设计中添加显式路径,这可能导致配置过程变得复杂。

为了解决以上问题,提出了引入"express snoops"的方法。"express snoops"是一种特殊的嗅探请求,即使在系统运行于时序模式时,也可以瞬间和原子地传播到整个层次结构上。这种方法类似于前述的第二或第三种选择,但由于嗅探是沿着常规总线互连传播的,所以没有额外的配置开销。然而,这可能引入一些时间上的不准确性,但如果系统中有专用路径用于这些嗅探,或者在较低级别缓存中维护额外的上层标记副本,那么差异可能是很小的。

最后,注意到该协议在某些配置下可能存在错误,特别是当有多个L2缓存,每个L2缓存后面有多个L1缓存时。这个问题可能在较新的版本中得到修复,但在较旧版本中,该协议在大多数有效的配置下是适用的。

这篇关于gem5学习(22):经典内存系统的一致性——Classic Memory System coherence的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/726107

相关文章

Nginx配置系统服务&设置环境变量方式

《Nginx配置系统服务&设置环境变量方式》本文介绍了如何将Nginx配置为系统服务并设置环境变量,以便更方便地对Nginx进行操作,通过配置系统服务,可以使用系统命令来启动、停止或重新加载Nginx... 目录1.Nginx操作问题2.配置系统服android务3.设置环境变量总结1.Nginx操作问题

Golang基于内存的键值存储缓存库go-cache

《Golang基于内存的键值存储缓存库go-cache》go-cache是一个内存中的key:valuestore/cache库,适用于单机应用程序,本文主要介绍了Golang基于内存的键值存储缓存库... 目录文档安装方法示例1示例2使用注意点优点缺点go-cache 和 Redis 缓存对比1)功能特性

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

Oracle数据库如何切换登录用户(system和sys)

《Oracle数据库如何切换登录用户(system和sys)》文章介绍了如何使用SQL*Plus工具登录Oracle数据库的system用户,包括打开登录入口、输入用户名和口令、以及切换到sys用户的... 目录打开登录入口登录system用户总结打开登录入口win+R打开运行对话框,输php入:sqlp

Linux内存泄露的原因排查和解决方案(内存管理方法)

《Linux内存泄露的原因排查和解决方案(内存管理方法)》文章主要介绍了运维团队在Linux处理LB服务内存暴涨、内存报警问题的过程,从发现问题、排查原因到制定解决方案,并从中学习了Linux内存管理... 目录一、问题二、排查过程三、解决方案四、内存管理方法1)linux内存寻址2)Linux分页机制3)