六个好用的Python库,绝对是瑰宝!

2024-02-18 20:36

本文主要是介绍六个好用的Python库,绝对是瑰宝!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在当今的技术浪潮中,Python已经成为了一种广泛应用的编程语言。而要想充分发挥Python的威力,离不开各种优秀的库的支持。这些库能够提供丰富的功能和强大的工具,帮助开发者们更高效地完成各种任务。在本文中,笔者将介绍6个被誉为瑰宝的Python库,它们无疑会让你的编程之旅变得更加轻松!

PyGWalker

https://github.com/Kanaries/pygwalker

PyGWalker是个在Jupyter Notebook环境中运行的可视化探索式分析工具,仅一条命令即可生成一个可交互的图形界面,以类似Tableau/PowerBI的方式,通过拖拽字段进行Pandas数据分析。

Science plots

SciencePlots是一款用于科学绘图的Python工具包。

当我们看学术期刊、论文时会看到各种各样高大上的图形。会好奇,这么好看的图到底怎么画的?是不是很困难?

的确,现在很多Python绘图工具只是关注图形所表达的数据信息,而忽略了样式。

SciencePlots则弥补了这片空白,它是一款专门针对各种学术论文的科学绘图工具,例如,science、ieee等。

如下图所示是SciencePlots绘制的ieee期刊多类别散点图效果。

pydbgen

pydbgen是一个轻量的纯 Python 库,它可以用于生成随机但有意义的数据记录(包括姓名、地址、信用卡号、日期、时间、公司名称、职位、车牌号等等),存放在 Pandas Dataframe 对象中,并保存到 SQLite 数据库或 Excel 文件。

如下示例是利用pydbgen生成随机的Pandas Dataframe,并生成数据库表。

import pydbgen
from pydbgen import pydbgen
myDB=pydbgen.pydb()testdf=myDB.gen_dataframe(5,['name','city','phone','date'])

HandCalcs

HandCalcs是一个非常实用的Python模块,可以帮助开发者轻松地从Python代码中生成LaTeX报告。使用HandCalcs,你只需编写最少的代码,就能自动生成符合LaTeX格式的数学方程。

对于经常使用LaTeX进行科技文档编写的开发者来说,HandCalcs是一个必备的工具。它可以大大减少手动编写、调整和更新数学方程的工作量,提高文档编写的效率和准确性。

如下示例是使用HandCalcs生成LaTeX格式数学方程的效果。

from math import sqrt,asin,sin
import handcalcs.render%%render
#symbolic
a = 1
b = 4
c = 3
x = (-b+sqrt(b**2-4*a*c))/(2*a)

AnimatPlot

AnimatPlot是一个开源的python库,它构建在Matplotlib之上,用于创建高度交互式的动画绘图。

示例如下:

# 导入所需的库
import numpy as np
import matplotlib.pyplot as plt
import animatplot as amp# 创建了一些坐标轴上的点
x = np.linspace(-2, 2, 41)
y = np.linspace(-2, 2, 41)
t = np.linspace(0, 2*np.pi, 30)
X, Y, T = np.meshgrid(x, y, t)# 使用生成的坐标点,计算
data = np.sin(X*X+Y*Y-T)
line_data = data[20,:,:]# 创建包含两个子图的图形窗口,并设置各种图形的属性,如坐标轴便签、标题等
fig, (ax1, ax2) = plt.subplots(1, 2)
for ax in [ax1, ax2]:ax.set_aspect('equal')ax.set_xlabel('x')
ax2.set_ylabel('y', labelpad=-5)
ax1.set_ylabel('z')
ax1.set_ylim([-1.1,1.1])
fig.suptitle('Multiple blocks')
ax1.set_title('Cross Section: $y=0$')
ax2.set_title(r'$z=\sin(x^2+y^2-t)$')# 创建两个block对象
# Line块用于绘制一条线,Pcolormesh块用于绘制一个伪彩色网格
line_block = amp.blocks.Line(X[0,:,:], line_data,ax=ax1, t_axis=1)
block = amp.blocks.Pcolormesh(X[:,:,0], Y[:,:,0], data, ax=ax2, t_axis=2, vmin=-1, vmax=1)# 添加颜色条,用于显示伪彩色网格的颜色映射。
plt.colorbar(block.quad)
# 创建时间轴对象,再使用Animation类将块和时间轴对象组合成一个动画
timeline = amp.Timeline(t, fps=10)
anim = amp.Animation([block, line_block], timeline)# 添加用户界面控制动画的小部件
anim.controls()
# 显示动画窗口
plt.show()

KnockKnock

KnockKnock是一个便捷的Python库,它会在机器学习模型训练结束或崩溃时发出通知。用户可以通过电子邮件、Slack、Microsoft Teams等方式接收通知。

它提供了简单的接口,通过几行代码即可设置不同的通知方式,使你能够及时了解训练进度和状态。以下是一个简单的示例:

from knockknock import email_sender# 设置邮件发送的配置信息
email_config = {"email_address": "your_email@example.com","password": "your_email_password","smtp_server": "smtp.example.com","smtp_port": 587,"receiver_email": "receiver_email@example.com"
}@email_sender(**email_config)
def train_model():# 训练模型的代码# ...# 调用训练函数
train_model()

在这个示例中,通过装饰train_model函数,使用提供的邮件配置信息设置了邮件发送功能。当训练完成或崩溃时,将通过电子邮件发送通知。

这篇关于六个好用的Python库,绝对是瑰宝!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/722383

相关文章

浅析Python中的绝对导入与相对导入

《浅析Python中的绝对导入与相对导入》这篇文章主要为大家详细介绍了Python中的绝对导入与相对导入的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1 Imports快速介绍2 import语句的语法2.1 基本使用2.2 导入声明的样式3 绝对import和相对i

Python中配置文件的全面解析与使用

《Python中配置文件的全面解析与使用》在Python开发中,配置文件扮演着举足轻重的角色,它们允许开发者在不修改代码的情况下调整应用程序的行为,下面我们就来看看常见Python配置文件格式的使用吧... 目录一、INI配置文件二、YAML配置文件三、jsON配置文件四、TOML配置文件五、XML配置文件

Python中conda虚拟环境创建及使用小结

《Python中conda虚拟环境创建及使用小结》本文主要介绍了Python中conda虚拟环境创建及使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录0.前言1.Miniconda安装2.conda本地基本操作3.创建conda虚拟环境4.激活c

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Python进行PDF文件拆分的示例详解

《Python进行PDF文件拆分的示例详解》在日常生活中,我们常常会遇到大型的PDF文件,难以发送,将PDF拆分成多个小文件是一个实用的解决方案,下面我们就来看看如何使用Python实现PDF文件拆分... 目录使用工具将PDF按页数拆分将PDF的每一页拆分为单独的文件将PDF按指定页数拆分根据页码范围拆分

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

python 3.8 的anaconda下载方法

《python3.8的anaconda下载方法》本文详细介绍了如何下载和安装带有Python3.8的Anaconda发行版,包括Anaconda简介、下载步骤、安装指南以及验证安装结果,此外,还介... 目录python3.8 版本的 Anaconda 下载与安装指南一、Anaconda 简介二、下载 An

Python自动化处理手机验证码

《Python自动化处理手机验证码》手机验证码是一种常见的身份验证手段,广泛应用于用户注册、登录、交易确认等场景,下面我们来看看如何使用Python自动化处理手机验证码吧... 目录一、获取手机验证码1.1 通过短信接收验证码1.2 使用第三方短信接收服务1.3 使用ADB读取手机短信1.4 通过API获取