ScanImage5.3+NI配置

2024-02-18 14:59
文章标签 配置 ni scanimage5.3

本文主要是介绍ScanImage5.3+NI配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我的环境

  • Scanimage 5.3
  • DAQmx 15.5
  • FlexRIO 15.5
  • MATLAB 2018b
  • VS2017

步骤

1.完全按照官方文档的需求配置
在这里插入图片描述

2.仿真模式见文档指示操作这里

3.MDF配置文件

% Most Software Machine Data File%% ScanImage%Global microscope properties
objectiveResolution = 15;           % Resolution of the objective in microns/degree of scan angle%Scanner systems
scannerNames = {'ResScanner'};      % Cell array of string names for each scan path in the microscope
scannerTypes = {'Resonant'};        % Cell array indicating the type of scanner for each name. Current options: {'Resonant' 'Linear' 'SLM'}%Simulated mode
simulated = true;                  % Boolean for activating simulated mode. For normal operation, set to 'false'. For operation without NI hardware attached, set to 'true'.%Optional components
components = {};                    % Cell array of optional components to load. Ex: {'dabs.thorlabs.ECU1' 'dabs.thorlabs.BScope2'}%Data file location
dataDir = '[MDF]\ConfigData';       % Directory to store persistent configuration and calibration data. '[MDF]' will be replaced by the MDF directorystartUpScript = '';%% Shutters
%Shutter(s) used to prevent any beam exposure from reaching specimen during idle periods. Multiple
%shutters can be specified and will be assigned IDs in the order configured below.
shutterNames = {'Main Shutter'};    % Cell array specifying the display name for each shutter eg {'Shutter 1' 'Shutter 2'}
shutterDaqDevices = {'PXI1Slot3'};  % Cell array specifying the DAQ device or RIO devices for each shutter eg {'PXI1Slot3' 'PXI1Slot4'}
shutterChannelIDs = {'PFI12'};      % Cell array specifying the corresponding channel on the device for each shutter eg {'PFI12'}shutterOpenLevel = true;               % Logical or 0/1 scalar indicating TTL level (0=LO;1=HI) corresponding to shutter open state for each shutter line. If scalar, value applies to all shutterLineIDs
shutterOpenTime = 0.1;              % Time, in seconds, to delay following certain shutter open commands (e.g. between stack slices), allowing shutter to fully open before proceeding.%% Beams
beamDaqDevices = {'PXI1Slot3'};                            % Cell array of strings listing beam DAQs in the system. Each scanner set can be assigned one beam DAQ ex: {'PXI1Slot4'}% Define the parameters below for each beam DAQ specified above, in the format beamDaqs(N).param = ...
beamDaqs(1).modifiedLineClockIn = '';           % one of {PFI0..15, ''} to which external beam trigger is connected. Leave empty for automatic routing via PXI/RTSI bus
beamDaqs(1).frameClockIn = '';                  % one of {PFI0..15, ''} to which external frame clock is connected. Leave empty for automatic routing via PXI/RTSI bus
beamDaqs(1).referenceClockIn = '';              % one of {PFI0..15, ''} to which external reference clock is connected. Leave empty for automatic routing via PXI/RTSI bus
beamDaqs(1).referenceClockRate = 1e+07;          % if referenceClockIn is used, referenceClockRate defines the rate of the reference clock in Hz. Default: 10e6HzbeamDaqs(1).chanIDs = 0;                       % Array of integers specifying AO channel IDs, one for each beam modulation channel. Length of array determines number of 'beams'.
beamDaqs(1).displayNames = {'Beam DAQ 1 CH 1'};                  % Optional string cell array of identifiers for each beam
beamDaqs(1).voltageRanges = 1.5;                % Scalar or array of values specifying voltage range to use for each beam. Scalar applies to each beam.beamDaqs(1).calInputChanIDs = NaN;               % Array of integers specifying AI channel IDs, one for each beam modulation channel. Values of nan specify no calibration for particular beam.
beamDaqs(1).calOffsets = 0;                    % Array of beam calibration offset voltages for each beam calibration channel
beamDaqs(1).calUseRejectedLight = false;        % Scalar or array indicating if rejected light (rather than transmitted light) for each beam's modulation device should be used to calibrate the transmission curve
beamDaqs(1).calOpenShutterIDs = 1;             % Array of shutter IDs that must be opened for calibration (ie shutters before light modulation device).%% Motors
%Motor used for X/Y/Z motion, including stacks. motors(1).controllerType = '';           % If supplied, one of {'sutter.mp285', 'sutter.mpc200', 'thorlabs.mcm3000', 'thorlabs.mcm5000', 'scientifica', 'pi.e665', 'pi.e816', 'npoint.lc40x'}.
motors(1).dimensions = '';               % Assignment of stage dimensions to SI dimensions. Can be any combination of X,Y,Z, and R.
motors(1).comPort = [];                  % Integer identifying COM port for controller, if using serial communication
motors(1).customArgs = {};               % Additional arguments to stage controller. Some controller require a valid stageType be specified
motors(1).invertDim = '';                % string with one character for each dimension specifying if the dimension should be inverted. '+' for normal, '-' for inverted
motors(1).positionDeviceUnits = [];      % 1xN array specifying, in meters, raw units in which motor controller reports position. If unspecified, default positionDeviceUnits for stage/controller type presumed.
motors(1).velocitySlow = [];             % Velocity to use for moves smaller than motorFastMotionThreshold value. If unspecified, default value used for controller. Specified in units appropriate to controller type.
motors(1).velocityFast = [];             % Velocity to use for moves larger than motorFastMotionThreshold value. If unspecified, default value used for controller. Specified in units appropriate to controller type.
motors(1).moveCompleteDelay = [];        % Delay from when stage controller reports move is complete until move is actually considered complete. Allows settling time for motor
motors(1).moveTimeout = [];              % Default: 2s. Fixed time to wait for motor to complete movement before throwing a timeout error
motors(1).moveTimeoutFactor = [];        % (s/um) Time to add to timeout duration based on distance of motor move command%% FastZ
%FastZ hardware used for fast axial motion, supporting fast stacks and/or volume imagingactuators(1).controllerType = '';           % If supplied, one of {'pi.e665', 'pi.e816', 'npoint.lc40x', 'analog'}.
actuators(1).comPort = [];                  % Integer identifying COM port for controller, if using serial communication
actuators(1).customArgs = {};               % Additional arguments to stage controller
actuators(1).daqDeviceName = '';            % String specifying device name used for FastZ control; Specify SLM Scanner name if FastZ device is a SLM
actuators(1).frameClockIn = '';             % One of {PFI0..15, ''} to which external frame trigger is connected. Leave empty for automatic routing via PXI/RTSI bus
actuators(1).cmdOutputChanID = [];          % AO channel number (e.g. 0) used for analog position control
actuators(1).sensorInputChanID = [];        % AI channel number (e.g. 0) used for analog position sensing
actuators(1).commandVoltsPerMicron = .1;    % Conversion factor for desired command position in um to output voltage
actuators(1).commandVoltsOffset = 0;        % Offset in volts for desired command position in um to output voltage
actuators(1).sensorVoltsPerMicron = [];     % Conversion factor from sensor signal voltage to actuator position in um. Leave empty for automatic calibration
actuators(1).sensorVoltsOffset = [];        % Sensor signal voltage offset. Leave empty for automatic calibration
actuators(1).maxCommandVolts = [];          % Maximum allowable voltage command
actuators(1).maxCommandPosn = [];           % Maximum allowable position command in microns
actuators(1).minCommandVolts = [];          % Minimum allowable voltage command
actuators(1).minCommandPosn = [];           % Minimum allowable position command in microns
actuators(1).optimizationFcn = '';          % Function for waveform optimization
actuators(1).affectedScanners = {};         % If this actuator only changes the focus for an individual scanner, enter the name%% ResScan (ResScanner)
nominalResScanFreq = 7910;          % [Hz] nominal frequency of the resonant scanner
beamDaqID = 1;                     % Numeric: ID of the beam DAQ to use with the resonant scan system
shutterIDs = 1;                     % Array of the shutter IDs that must be opened for resonant scan system to operatedigitalIODeviceName = 'PXI1Slot3';  % String: Device name of the DAQ board or FlexRIO FPGA that is used for digital inputs/outputs (triggers/clocks etc). If it is a DAQ device, it must be installed in the same PXI chassis as the FlexRIO DigitizerfpgaModuleType = 'NI7961';          % String: Type of FlexRIO FPGA module in use. One of {'NI7961' 'NI7975'}
digitizerModuleType = 'NI5734';     % String: Type of digitizer adapter module in use. One of {'NI5732' 'NI5734'}
rioDeviceID = 'RIO0';               % FlexRIO Device ID as specified in MAX. If empty, defaults to 'RIO0'
channelsInvert = [false false false false];             % Logical: Specifies if the input signal is inverted (i.e., more negative for increased light signal)externalSampleClock = false;        % Logical: use external sample clock connected to the CLK IN terminal of the FlexRIO digitizer module
externalSampleClockRate = [];       % [Hz]: nominal frequency of the external sample clock connected to the CLK IN terminal (e.g. 80e6); actual rate is measured on FPGAenableRefClkOutput = false;         % Enables/disables the 10MHz reference clock output on PFI14 of the digitalIODevice%Galvo mirror settings
galvoDeviceName = 'PXI1Slot3';      % String identifying the NI-DAQ board to be used to control the galvo(s). The name of the DAQ-Device can be seen in NI MAX. e.g. 'Dev1' or 'PXI1Slot3'. This DAQ board needs to be installed in the same PXI chassis as the FPGA board specified in section
galvoAOChanIDX = 0;                % The numeric ID of the Analog Output channel to be used to control the X Galvo. Can be empty for standard Resonant Galvo scanners.
galvoAOChanIDY = 1;                 % The numeric ID of the Analog Output channel to be used to control the Y Galvo.galvoAIChanIDX = [];                % The numeric ID of the Analog Input channel for the X Galvo feedback signal.
galvoAIChanIDY = [];                % The numeric ID of the Analog Input channel for the Y Galvo feedback signal.xGalvoAngularRange = 15;            % max range in optical degrees (pk-pk) for x galvo if present
yGalvoAngularRange = 15;            % max range in optical degrees (pk-pk) for y galvogalvoVoltsPerOpticalDegreeX = 1;  % galvo conversion factor from optical degrees to volts (negative values invert scan direction)
galvoVoltsPerOpticalDegreeY = 1;  % galvo conversion factor from optical degrees to volts (negative values invert scan direction)galvoParkDegreesX = -8;             % Numeric [deg]: Optical degrees from center position for X galvo to park at when scanning is inactive
galvoParkDegreesY = -8;             % Numeric [deg]: Optical degrees from center position for Y galvo to park at when scanning is inactive%Resonant mirror settings
resonantZoomDeviceName = 'PXI1Slot3';        % String identifying the NI-DAQ board to host the resonant zoom analog output. Leave empty to use same board as specified in 'galvoDeviceName'
resonantZoomAOChanID = 0;           % resonantZoomAOChanID: The numeric ID of the Analog Output channel to be used to control the Resonant Scanner Zoom level.
resonantEnableTerminal = [];        % (optional) The PFI line on the resonantZoomDevice that enables/disables the resonant scanner. Example: 13   Not required for Thorlabs BSCoperesonantAngularRange = 15;          % max range in optical degrees (pk-pk) for resonant
rScanVoltsPerOpticalDegree = 0.3333;  % resonant scanner conversion factor from optical degrees to voltsresonantScannerSettleTime = 0.5;    % [seconds] time to wait for the resonant scanner to reach its desired frequency after an update of the zoomFactor

这篇关于ScanImage5.3+NI配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/721535

相关文章

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

gradle安装和环境配置全过程

《gradle安装和环境配置全过程》本文介绍了如何安装和配置Gradle环境,包括下载Gradle、配置环境变量、测试Gradle以及在IntelliJIDEA中配置Gradle... 目录gradle安装和环境配置1 下载GRADLE2 环境变量配置3 测试gradle4 设置gradle初始化文件5 i

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

C#读取本地网络配置信息全攻略分享

《C#读取本地网络配置信息全攻略分享》在当今数字化时代,网络已深度融入我们生活与工作的方方面面,对于软件开发而言,掌握本地计算机的网络配置信息显得尤为关键,而在C#编程的世界里,我们又该如何巧妙地读取... 目录一、引言二、C# 读取本地网络配置信息的基础准备2.1 引入关键命名空间2.2 理解核心类与方法

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to