10M上下文,仅靠提示就掌握一门语言,Google Gemini 1.5被OpenAI抢头条是真冤

本文主要是介绍10M上下文,仅靠提示就掌握一门语言,Google Gemini 1.5被OpenAI抢头条是真冤,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这两天,几乎整个AI圈的目光都被OpenAI发布Sora模型的新闻吸引了去。其实还有件事也值得关注,那就是Google继上周官宣Gemini 1.0 Ultra 后,火速推出下一代人工智能模型Gemini 1.5。

公司首席执行官 Sundar Pichai携首席科学家Jeff Dean等众高管在推特同时宣布了这一重大更新。

其中最亮眼的当属它在跨模态超长文本理解能力上的大幅突破。Gemini 1.5能够稳定处理的信息量高达100万个tokens。更直观去感受,这相当于1小时的视频、11小时的音频、超过3万行代码或70万个单词。

在此之前,世界上公开可用的LLM中,最大的上下文窗口来自Claude 2.1的20万tokens。同时GPT-4是12.8万tokens, Gemini 1.0 Pro是3.2万tokens——此次Gemini 1.5已在窗口长度上成功碾压所有大模型。

Google还表示,他们在研究中已成功测试了高达1000万tokens,相当于一次将整个《指环王》三部曲放进去。

Sundar Pichai认为更大的查询窗口对企业来说会非常有用, “电影制作人可能会上传他们的整部电影,询问Gemini评论家是什么意见,公司还能使用Gemini审查大量的财务记录。这是我们实现的重大突破之一。”

更高效的MoE架构

作为目前Google公开的最先进LLM,Gemini 1.5采用时下流行的混合专家(MoE)架构来提高效率,响应更快、质量更高。

与传统Transformer 作为一个大型神经网络运行不同, MoE 模型被划分为较小的专家模块。执行任务时会根据信息类型,选择性地激活最相关的专家路径,从而大大提升模型的效率和准确性。不仅更适应处理大规模数据集的复杂任务,还有更强的可扩展性和灵活性。

我们熟知的Mistral 8x7B、MiniMax abab6都是使用了Moe架构,更有爆料称GPT-4也是由8个或16个专家模型构成。

根据Google 数据,此次供早期测试的Gemini 1.5 Pro在使用更少计算资源的同时,对数学、科学、推理、多语言和视频等任务的执行水平已逼近1.0 Ultra。

在官方演示和58页的技术论文中, Google还针对新模型的强大性能给出了以下几个用例:

大量信息的复杂推理和多模态分析

Gemini 1.5 Pro 可以无缝分析、分类和总结给定的长篇复杂文档。例如,上传阿波罗 11 号登月任务的 402 页pdf记录,让它根据要求列出3个有意思的瞬间,并引用原始对话细节。

给出维克多·雨果的五卷本小说《悲惨世界》(1382页,73.2万tokens),粗略勾勒一个场景,并提问“看看这幅画中的事件是在哪一页上?”模型准确给出了页码,并标识出关键情节。

在超长视频理解上同样出色,能够快速准确地分析各种事件和情节点。比如给定一部相当于68.4万tokens、时长为44分钟的无声电影Sherlock Jr.,要求一句话总结电影情节:

继续询问一个“纸张从口袋取出的关键信息和时间”。Gemini 1.5 Pro用时57秒给出详细答案。

另外,Gemini 1.5 Pro超大的上下文窗口还能够深入分析整个代码库。当发出一个81.6万tokens、超过10万行代码的提示时,它可以根据提问快速找到特定demo的代码,还能提出有用的修改建议并进行解释。

一本语法书,自学翻译新语言

另一项让人耳目一新的是Gemini 1.5 Pro的“上下文学习(in-context learning)”技能,意味着它能从一个长提示中给出的信息里学习新技能,而无需额外微调。

为此,Google使用“对一本书进行机器翻译 (MTOB)”进行测试,并选用新几内亚西部不到200名使用者的Kalamang语。由于该语言几乎没有任何网络信息,模型只能依赖于给定的上下文数据,而非训练权重中储存的知识来进行翻译。

在测试中, 工作人员向Gemini 1.5 Pro提供了500页参考语法、2000条双语词条和400个额外的平行句子——总计约25万tokens信息作为其输入上下文,要求从中学习并完成Kalamang语和英语的互译。

从测试结果可见,Gemini 1.5 Pro对整本书的翻译得分接近人类学习者,在半本书的表现中远超GPT-4 Turbo与Claude 2.1。

对于一门在模型训练过程中几乎完全没接触过的语言来说,这一成就尤为突出。不仅支持濒危语言的保护和复兴,也为其它低资源教育领域开辟了新的可能性。

从今天开始,Google将通过AI Studio和Vertex AI向开发者和企业客户提供 Gemini 1.5 Pro的有限预览权限。最终在完成所有安全部署和测试后取代Gemini 1.0。免费使用的Gemini 1.5 Pro标准版将采用12.8万个tokens上下文窗口,普通用户需要额外支付费用获得100万tokens使用权。

被OpenAI“夹心”,但仍不可小觑

此次Gemini 1.5的发布时间再次“不凑巧”,前有OpenAI放话开发网络搜索产品和推出GPT记忆功能,后面紧跟着两小时后又横空杀出个Sora。奥特曼武器库丰富且擅长针锋相对,每当Google有新动作,刚要炸起水花就被摁下去。

网友们形容当天的场面就如同:

但是,依然有不少声音站出来提醒大家切莫小看了Gemini 1.5 Pro,它对超长文本强大的分析推理能力是其它大模型做不到的。

NVIDIA高级科学家Jim Fan更是发表评论盛赞。表示尽管Gemini-1.5 Pro被抢走了风头,被人们拿梗图来开玩笑,但这仍是LLM能力的巨大跃升。测试中达到的1000万tokens上下文、擅长检索、在零样本情况下对极长指令进行泛化、多模态工作能力都是惊人的。

“重要的不是声明中实现多少上下文长度的神话,而是模型实际上如何使用上下文来解决现实世界的问题。”他认为1.5 Pro不通过微调而自主实现对Kalamang语的学习和应用,就展现出了这种神经激活中的复杂技能,超越了现有的技术水平。

如今OpenAI的急速扩张和Gemini逐步加快的升级速度,已经标志着生成式AI底层技术的狂热步伐。Google DeepMind 负责人Demis Hassabis表示,可以期待未来几个月会有更多的进步。

“这是一种新的节奏”,他说,“我正试图带来一种类似初创公司的心态。”

这篇关于10M上下文,仅靠提示就掌握一门语言,Google Gemini 1.5被OpenAI抢头条是真冤的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/721380

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目: 题解: static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num & MASK1) == 0) {return

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

如何确定 Go 语言中 HTTP 连接池的最佳参数?

确定 Go 语言中 HTTP 连接池的最佳参数可以通过以下几种方式: 一、分析应用场景和需求 并发请求量: 确定应用程序在特定时间段内可能同时发起的 HTTP 请求数量。如果并发请求量很高,需要设置较大的连接池参数以满足需求。例如,对于一个高并发的 Web 服务,可能同时有数百个请求在处理,此时需要较大的连接池大小。可以通过压力测试工具模拟高并发场景,观察系统在不同并发请求下的性能表现,从而

C语言:柔性数组

数组定义 柔性数组 err int arr[0] = {0}; // ERROR 柔性数组 // 常见struct Test{int len;char arr[1024];} // 柔性数组struct Test{int len;char arr[0];}struct Test *t;t = malloc(sizeof(Test) + 11);strcpy(t->arr,

C语言指针入门 《C语言非常道》

C语言指针入门 《C语言非常道》 作为一个程序员,我接触 C 语言有十年了。有的朋友让我推荐 C 语言的参考书,我不敢乱推荐,尤其是国内作者写的书,往往七拼八凑,漏洞百出。 但是,李忠老师的《C语言非常道》值得一读。对了,李老师有个官网,网址是: 李忠老师官网 最棒的是,有配套的教学视频,可以试看。 试看点这里 接下来言归正传,讲解指针。以下内容很多都参考了李忠老师的《C语言非

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

C 语言的基本数据类型

C 语言的基本数据类型 注:本文面向 C 语言初学者,如果你是熟手,那就不用看了。 有人问我,char、short、int、long、float、double 等这些关键字到底是什么意思,如果说他们是数据类型的话,那么为啥有这么多数据类型呢? 如果写了一句: int a; 那么执行的时候在内存中会有什么变化呢? 橡皮泥大家都玩过吧,一般你买橡皮泥的时候,店家会赠送一些模板。 上