linux kernel 内存踩踏之KASAN_SW_TAGS(二)

2024-02-18 09:04

本文主要是介绍linux kernel 内存踩踏之KASAN_SW_TAGS(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背景

linux kernel 内存踩踏之KASAN(一)_kasan版本跟hasan版本区别-CSDN博客

上一篇简单介绍了标准版本的KASAN使用方法和实现,这里将介绍KASAN_SW_TAGS和KASAN_HW_TAGS

的使用和背后基本原理,下图是三种方式的对比:

Overhead typeMTEKASAN_SW_TAG(kernel)/HWASan(userspace)KASAN(kernel)/ASan(userspace)
RAM3%-5%10%-35%~2x
CPU0%-5%~2x~2x
Code size2%-4%40%-50%50%-2x

上表数据来源google的 userspace下MTE、HWASAN和ASAN的测试数据,内核的部分没有找到准确的对比数据,应该也差不多,套用上表。

二、KASAN_SW_TAGS使能相关配置

关键差异:CONFIG_KASAN_SW_TAGS=y

/sys/kernel/debug # zcat /proc/config.gz | grep -i kasan
CONFIG_KASAN_SHADOW_OFFSET=0xefff800000000000 //这个offset和普通版本kasan有差异
CONFIG_DRIVER_KASAN_TEST=m
CONFIG_HAVE_ARCH_KASAN=y
CONFIG_HAVE_ARCH_KASAN_SW_TAGS=y
CONFIG_HAVE_ARCH_KASAN_HW_TAGS=y
CONFIG_HAVE_ARCH_KASAN_VMALLOC=y
CONFIG_CC_HAS_KASAN_GENERIC=y
CONFIG_CC_HAS_KASAN_SW_TAGS=y
CONFIG_KASAN=y
CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX=y
# CONFIG_KASAN_GENERIC is not set
CONFIG_KASAN_SW_TAGS=y     //SW_TAGS 版本kasan
# CONFIG_KASAN_HW_TAGS is not set
CONFIG_KASAN_OUTLINE=y
# CONFIG_KASAN_INLINE is not set
CONFIG_KASAN_STACK=y      //stack kasan检测,如局部变量,局部数组等操作引起的内存踩踏
CONFIG_KASAN_VMALLOC=y    //vmalloc kasan检测,使用vmalloc申请内存的内存踩踏

三、KASAN_SW_TAGS基本原理

SW_TAG shadow的原理就是利用ARM64的TBI(Top Byte Ignore)特性,在最高byte存储指针存储能访问内存区域的shadow标记,利用指针操作地址时就会检查指针的shadow和操作地址的的shadow是否一致,不一致则触发内存异常并报告原因。

sw_tag 信息

#define KASAN_PAGE_FREE		KASAN_TAG_INVALID
#define KASAN_PAGE_REDZONE	KASAN_TAG_INVALID
#define KASAN_SLAB_REDZONE	KASAN_TAG_INVALID
#define KASAN_SLAB_FREE		KASAN_TAG_INVALID
#define KASAN_VMALLOC_INVALID	KASAN_TAG_INVALID /* only used for SW_TAGS */#define KASAN_TAG_KERNEL	0xFF /* native kernel pointers tag */
#define KASAN_TAG_INVALID	0xFE /* inaccessible memory tag */
#define KASAN_TAG_MAX		0xFD /* maximum value for random tags */#ifdef CONFIG_KASAN_HW_TAGS
#define KASAN_TAG_MIN		0xF0 /* minimum value for random tags */
#else
#define KASAN_TAG_MIN		0x00 /* minimum value for random tags */
#endif

SW_TAG的在指针内存分配时指定,内存有效时随机生成的有效值范围:0x00 ~ 0xFD, 0xFE用来表示free或者redzone等标记;

下图是arm64 48位 pagesize 4K的内存映射图,shadow的16TB映射整个内核空间:

CONFIG_KASAN_SHADOW_OFFSET=0xefff800000000000

计算方法:

CONFIG_KASAN_SHADOW_OFFSET= KASAN_SHADOW_START - KERNEL_ADDR_START >>4

= 0xffff700000000000 - ( 0xffff000000000000 >> 4) = 0xefff800000000000

有了这个kasan_shadow_offset, 后面我们需要获取一个内核地址对应的shadow 位置,只需要通过公式:

kernel_addr >> 4 + CONFIG_KASAN_SHADOW_OFFSET = kernel_addr对应的shadow_addr

四、sw_tag生成和验证流程分析

4.1 设置sw_tag

还是用kmalloc为例:

kmalloc
-->kmalloc_trace-->__kmem_cache_alloc_node-->slab_alloc_node-->slab_post_alloc_hook-->kasan_slab_allocvoid * __must_check __kasan_slab_alloc(struct kmem_cache *cache,void *object, gfp_t flags, bool init)
{..../** Generate and assign random tag for tag-based modes.* Tag is ignored in set_tag() for the generic mode.*/tag = assign_tag(cache, object, false);    // 1、随机数分配tagtagged_object = set_tag(object, tag);      // 2、设置tag 到指针 /** Unpoison the whole object.* For kmalloc() allocations, kasan_kmalloc() will do precise poisoning.*/kasan_unpoison(tagged_object, cache->object_size, init); //3、从分配地址和size确认tag是否需要更新,如果和上面新分配的tag值不同,则更新tag/* Save alloc info (if possible) for non-kmalloc() allocations. */if (kasan_stack_collection_enabled() && !is_kmalloc_cache(cache))kasan_save_alloc_info(cache, tagged_object, flags);//4、存储分配stackreturn tagged_object;
}#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
#define __tag_shifted(tag)  ((u64)(tag) << 56)
#define __tag_reset(addr)   __untagged_addr(addr)
#define __tag_get(addr)     (__u8)((u64)(addr) >> 56)

流程如下:

1、分配tag随机数(0x00~0xFD)

2、给指针最高byte存储新 tag

3、根据指针tag和分配的长度,检查 ptr>>4 + shadow_offset处存储的tag值是否一致,不一致则更新

4、返回指针(高byte为tag)

4.2 检查指针

检查指针即使是在kasan_check_range中进行的,

(gdb) disassemble __hwasan_store1_noabort
Dump of assembler code for function __hwasan_store1_noabort:0xffff8000803d6f08 <+0>:	paciasp0xffff8000803d6f0c <+4>:	stp	x29, x30, [sp, #-16]!0xffff8000803d6f10 <+8>:	xpaclri0xffff8000803d6f14 <+12>:	mov	w2, #0x1                   	// #10xffff8000803d6f18 <+16>:	mov	x29, sp0xffff8000803d6f1c <+20>:	mov	x3, x300xffff8000803d6f20 <+24>:	mov	x1, #0x1                   	// #10xffff8000803d6f24 <+28>:	bl	0xffff8000803d6e38 <kasan_check_range>0xffff8000803d6f28 <+32>:	ldp	x29, x30, [sp], #160xffff8000803d6f2c <+36>:	autiasp0xffff8000803d6f30 <+40>:	retbool kasan_check_range(const void *addr, size_t size, bool write,unsigned long ret_ip)
{u8 tag;u8 *shadow_first, *shadow_last, *shadow;void *untagged_addr;if (unlikely(size == 0))return true;if (unlikely(addr + size < addr))return !kasan_report(addr, size, write, ret_ip);tag = get_tag((const void *)addr);  //1、获取指针tag/** Ignore accesses for pointers tagged with 0xff (native kernel* pointer tag) to suppress false positives caused by kmap.** Some kernel code was written to account for archs that don't keep* high memory mapped all the time, but rather map and unmap particular* pages when needed. Instead of storing a pointer to the kernel memory,* this code saves the address of the page structure and offset within* that page for later use. Those pages are then mapped and unmapped* with kmap/kunmap when necessary and virt_to_page is used to get the* virtual address of the page. For arm64 (that keeps the high memory* mapped all the time), kmap is turned into a page_address call.* The issue is that with use of the page_address + virt_to_page* sequence the top byte value of the original pointer gets lost (gets* set to KASAN_TAG_KERNEL (0xFF)).*/if (tag == KASAN_TAG_KERNEL)return true;untagged_addr = kasan_reset_tag((const void *)addr); //2、将带tag指针转换成指针if (unlikely(!addr_has_metadata(untagged_addr)))return !kasan_report(addr, size, write, ret_ip);shadow_first = kasan_mem_to_shadow(untagged_addr);  //3、提取对应地址的sw_tag shadow值shadow_last = kasan_mem_to_shadow(untagged_addr + size - 1); //4、提取访问地址尾部的sw_tag shadow值for (shadow = shadow_first; shadow <= shadow_last; shadow++) {if (*shadow != tag) {                              //5、遍历检查shadow tag和指针tag是否匹配return !kasan_report(addr, size, write, ret_ip);}}return true;
}

如上面代码逻辑,检查tag的流程如下:

1、传入指针和内存操作的长度

2、获取指针tag

3、将带tag指针转换成指针

4、提取对应地址的sw_tag shadow值

5、提取访问地址尾部的sw_tag shadow值

6、遍历检查shadow tag和指针tag是否匹配

五、利用 test driver程序验证

还是上一篇的例子(linux kernel 内存踩踏之KASAN(一)_kasan版本跟hasan版本区别-CSDN博客):

例子日志:

/test # echo 0 > /dev/kasan_test 
[  150.681333] kmalloc_oob_right d2ff000003de9c00
[  150.691414] ==================================================================
[  150.693254] BUG: KASAN: invalid-access in kmalloc_oob_right.constprop.0+0x4c/0x6c [kasan_driver]
[  150.695503] Write of size 1 at addr d2ff000003de9c81 by task sh/181
[  150.696332] Pointer tag: [d2], memory tag: [fe]
[  150.696848] 
[  150.697599] CPU: 1 PID: 181 Comm: sh Tainted: G    B            N 6.6.1-g00ad0b878692 #18
[  150.698596] Hardware name: linux,dummy-virt (DT)
[  150.699352] Call trace:
[  150.699744]  dump_backtrace+0x90/0xe8
[  150.700697]  show_stack+0x18/0x24
[  150.701221]  dump_stack_lvl+0x48/0x60
[  150.701716]  print_report+0x15c/0x54c
[  150.702204]  kasan_report+0xc4/0x108
[  150.702678]  kasan_check_range+0x80/0xa4
[  150.703198]  __hwasan_store1_noabort+0x20/0x2c
[  150.703749]  kmalloc_oob_right.constprop.0+0x4c/0x6c [kasan_driver]
[  150.704593]  kasan_test_case+0x40/0xc0 [kasan_driver]
[  150.705354]  kasan_testcase_write+0x88/0x130 [kasan_driver]
[  150.706170]  vfs_write+0x144/0x4d8
[  150.706667]  ksys_write+0xe0/0x1b0
[  150.707166]  __arm64_sys_write+0x44/0x58
[  150.707729]  invoke_syscall+0x60/0x17c
[  150.708246]  el0_svc_common.constprop.0+0x78/0x13c
[  150.708842]  do_el0_svc+0x30/0x40
[  150.709462]  el0_svc+0x40/0x100
[  150.709973]  el0t_64_sync_handler+0x120/0x12c
[  150.710410]  el0t_64_sync+0x190/0x194
[  150.710946] 
[  150.711219] The buggy address belongs to the object at ffff000003de9c80
[  150.711219]  which belongs to the cache kmalloc-128 of size 128
[  150.712055] The buggy address is located 1 bytes inside of
[  150.712055]  128-byte region [ffff000003de9c80, ffff000003de9d00)
[  150.712749] 
[  150.713093] The buggy address belongs to the physical page:
[  150.713741] page:(____ptrval____) refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x43de9
[  150.714943] flags: 0x3fffc0000000800(slab|node=0|zone=0|lastcpupid=0xffff|kasantag=0x0)
[  150.715955] page_type: 0xffffffff()
[  150.716752] raw: 03fffc0000000800 82ff000003402600 dead000000000122 0000000000000000
[  150.717349] raw: 0000000000000000 0000000080200020 00000001ffffffff 0000000000000000
[  150.717938] page dumped because: kasan: bad access detected
[  150.718358] 
[  150.718602] Memory state around the buggy address:
[  150.719208]  ffff000003de9a00: 2c 2c 2c 2c 2c 2c 2c fe 28 28 28 28 28 28 28 28
[  150.719744]  ffff000003de9b00: 66 66 66 66 66 66 66 66 f8 f8 f8 f8 f8 f8 f8 f8
[  150.720267] >ffff000003de9c00: d2 d2 d2 d2 d2 d2 d2 d2 fe fe fe fe fe fe fe fe
[  150.720886]                                            ^
[  150.721635]  ffff000003de9d00: fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe
[  150.722291]  ffff000003de9e00: fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe
[  150.722978] ==================================================================
[  150.724556] kasan_test_case type 0

调试:

(gdb) disassemble 
Dump of assembler code for function kmalloc_oob_right:
0xffff80007b160300 <+0>:	paciasp0xffff80007b160304 <+4>:	adrp	x0, 0xffff8000822ce000 <cpu_ops+432>0xffff80007b160308 <+8>:	stp	x29, x30, [sp, #-32]!0xffff80007b16030c <+12>:	mov	x2, #0x80                  	// #1280xffff80007b160310 <+16>:	mov	w1, #0xcc0                 	// #32640xffff80007b160314 <+20>:	mov	x29, sp0xffff80007b160318 <+24>:	ldr	x0, [x0, #3648]0xffff80007b16031c <+28>:	str	x19, [sp, #16]0xffff80007b160320 <+32>:	bl	0xffff80008033c920 <kmalloc_trace>  //1.指针设置sw tag 
=> 0xffff80007b160324 <+36>:	mov	x2, x0         //断点0xffff80007b160328 <+40>:	adrp	x1, 0xffff80007b1640000xffff80007b16032c <+44>:	add	x1, x1, #0x1100xffff80007b160330 <+48>:	add	x1, x1, #0x480xffff80007b160334 <+52>:	mov	x19, x00xffff80007b160338 <+56>:	adrp	x0, 0xffff80007b1640000xffff80007b16033c <+60>:	add	x0, x0, #0x500xffff80007b160340 <+64>:	bl	0xffff80008015d280 <_printk>0xffff80007b160344 <+68>:	add	x0, x19, #0x810xffff80007b160348 <+72>:	bl	0xffff8000803d6f08 <__hwasan_store1_noabort> //2.检查指针访问的内存是否合法0xffff80007b16034c <+76>:	mov	w1, #0x79                  	// #1210xffff80007b160350 <+80>:	strb	w1, [x19, #129]0xffff80007b160354 <+84>:	mov	x0, x190xffff80007b160358 <+88>:	bl	0xffff80008033da7c <kfree>0xffff80007b16035c <+92>:	ldr	x19, [sp, #16]0xffff80007b160360 <+96>:	ldp	x29, x30, [sp], #320xffff80007b160364 <+100>:	autiasp0xffff80007b160368 <+104>:	ret


1、在上图断点处检查kmalloc_trace分配的指针值
(gdb) p /x $x0
$7 = 0xd2ff000003de9c00

2、利用计算公式,寻找对应指针地址存储的sw_tag shadow值:
ptr >> 4 + kasan_offset = kasan sw shadow

计算时记得将指针头替换成0xff
即:0xffff000003de9c00 >> 4 + 0xefff800000000000 = 0xFFFF7000003DE9C0
(gdb) x /30b 0xFFFF7000003DE9C0
0xffff7000003de9c0: 0xd2 0xd2 0xd2 0xd2 0xd2 0xd2 0xd2 0xd2
0xffff7000003de9c8: 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe
0xffff7000003de9d0: 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe
0xffff7000003de9d8: 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe

上面的0xd2代表指针指向有效空间的范围,8 个0xd2, 由于sw_tag是每16个byte对应一个byte, 这里表示这个指针有效的范围是8*16 =128字节,正好和测试用例 kmalloc(128) 对应;

3、kasan report原因是我们访问的指针对应地址长度为0x81, 访问到了129字节处,这里对应的tag为0xfe,最后上报异常如下:

[ 150.695503] Write of size 1 at addr d2ff000003de9c81 by task sh/181
[ 150.696332] Pointer tag: [d2], memory tag: [fe]

六、总结

从KASAN 和 KASAN_SW_TAGS的对比来看

类型shadow内存占用cpu占用优缺点
KASAN1/8复杂,每次内存访问,需要计算对比shadow值定位准确,8byte内的踩踏也能检测;32位/64位均能使用
KASAN_SW_TAGS1/16每次内存访问,需要计算对比shadow值16 byte内的踩踏无法区分, 仅64才能使用(因为依赖arm64 TBI feature)

缺点1:16byte内的踩踏无法检测

KASAN_SW_TAGS的tag标记范围是16byte, 打一个比方:

ptr = kmalloc(129);

ptr[129] = 0; // 此时不会报错,无法检测到越界,实际上 pt[129] ~ ptr[128 + 16 -1] 内存越界操作都无法检测出来,因为这16字节的tag都是一样的,tag本身没有16byte內分配大小的记录;

缺点2:tag虽然是随机值,但是连续内存存在随机tag值一致导致漏检测可能

比如,

ptr1= kmalloc(128);

ptr2= kmalloc(128);

假如ptr1的tag是0x12, ptr1的tag也是0x12, 同时它们的内存连续,那么ptr1[128] = 0的操作就不会报错;

漏检测概率:由于0xfe和0xff两个值不会作为tag随机数, 连续内存生成重复tag的概率为1/254 * 1/254。

参考:

Android Native | 内存问题的终极武器--MTE

这篇关于linux kernel 内存踩踏之KASAN_SW_TAGS(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/720670

相关文章

VScode连接远程Linux服务器环境配置图文教程

《VScode连接远程Linux服务器环境配置图文教程》:本文主要介绍如何安装和配置VSCode,包括安装步骤、环境配置(如汉化包、远程SSH连接)、语言包安装(如C/C++插件)等,文中给出了详... 目录一、安装vscode二、环境配置1.中文汉化包2.安装remote-ssh,用于远程连接2.1安装2

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

Linux之软件包管理器yum详解

《Linux之软件包管理器yum详解》文章介绍了现代类Unix操作系统中软件包管理和包存储库的工作原理,以及如何使用包管理器如yum来安装、更新和卸载软件,文章还介绍了如何配置yum源,更新系统软件包... 目录软件包yumyum语法yum常用命令yum源配置文件介绍更新yum源查看已经安装软件的方法总结软

linux报错INFO:task xxxxxx:634 blocked for more than 120 seconds.三种解决方式

《linux报错INFO:taskxxxxxx:634blockedformorethan120seconds.三种解决方式》文章描述了一个Linux最小系统运行时出现的“hung_ta... 目录1.问题描述2.解决办法2.1 缩小文件系统缓存大小2.2 修改系统IO调度策略2.3 取消120秒时间限制3

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

Linux:alias如何设置永久生效

《Linux:alias如何设置永久生效》在Linux中设置别名永久生效的步骤包括:在/root/.bashrc文件中配置别名,保存并退出,然后使用source命令(或点命令)使配置立即生效,这样,别... 目录linux:alias设置永久生效步骤保存退出后功能总结Linux:alias设置永久生效步骤

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存