本文主要是介绍Rabbit Kingdom HDU - 4777 (离线处理+树状数组),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Rabbit Kingdom
HDU - 4777
题意:给定n个数a[i] ( 1=< i <=n) 现在给定m个询问,每个询问一个区间[l,r],问该区间有多少个数与其它所有的数互素。
1 =< n,m,a[i] <= 200000
思路:对于每个数a[i] 处理后可以得到一个区间[L,R]在这个区间里面,a[i]对所有包含i的[L,R]的子区间都能贡献一个结果。每个a[i] 得到一个三元组[L,i,R],每个询问[l,r]的结果其实就是问有多少个三元组满足 L <= l && l <= i && r >= i && r <= R;
考虑将询问按照右端点由小到大排序:考虑将 < r 的三元组信息更新过来,可是更新什么数据呢?考虑下面的情况。
对一个询问 [l,r] 和 三元组[L,i,R]的关系可能为:
L l r
l L r
L i l r
L l i r ***
l L i r
只要R < r 都不用再考虑了,这样的三元组肯定不会再贡献结果。
综上看来只有***是能对结果更新的。
所以:
三元组的L来了暂时不必更新,因为没用啊,对结果无影响。
三元组的i来了我让i的数量在树状数组加1,L加1
三元组的R来了就消除对应的更新。
这样一来,每个询问的结果就应当是 [l,r]区间的i的数目 - (l,r]区间的L的数目啦。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 2e5+777;
const ll mod = 998244353LL;
vector <int> vc[maxn];
bitset <maxn> bt;
struct node{int l,m,r,x,t;node(){}node(int l,int m,int r,int x,int t):l(l),m(m),r(r),x(x),t(t){}bool operator < (const node nd) const{if(x != nd.x) return x < nd.x;return t < nd.t;}
}R[maxn],RC[maxn*2],q[maxn];
int a[maxn],last[maxn],ans[maxn];
int prime[maxn],cnt;
void get()
{prime[cnt++] = 2;prime[cnt++] = 3;for(ll i = 5,j = 2; i < maxn; i+=j,j=6-j){if(bt[i/3LL]) continue;prime[cnt++] = i;if(i > maxn/i) continue;for(ll l = i*i,v=j; l < maxn; l+=v*i,v=6-v) bt[l/3LL] = 1;}
}int sum[2][maxn];void add(int i,int x,int v)
{for(;x < maxn; x+=(x&(-x)))sum[i][x] += v;
}int getsum(int i,int x)
{int ans = 0;for(;x >= 1; x-=(x&(-x)))ans += sum[i][x];return ans;
}int main()
{get();for(int i = 0; i < cnt; i++){for(int j = prime[i];j < maxn; j+=prime[i]){vc[j].push_back(prime[i]);}}int n,m;while(scanf("%d%d",&n,&m)&&m+n){int k = 0;memset(sum,0,sizeof(sum));for(int i = 1; i < maxn; i++) last[i] = 0;for(int i = 1; i <= n; i++) scanf("%d",&a[i]);for(int i = 1; i <= n; i++){int pos = 1;for(int j = 0; j < vc[a[i]].size(); j++){pos = max(pos,last[vc[a[i]][j]]+1);last[vc[a[i]][j]] = i;}R[i].l = pos;R[i].m = i;}for(int i = 1; i <= maxn; i++) last[i] = n+1;for(int i = n; i >= 1; i--){int pos = n;for(int j = 0; j < vc[a[i]].size(); j++){pos = min(pos,last[vc[a[i]][j]]-1);last[vc[a[i]][j]] = i;}R[i].r = pos;RC[k++] = node(R[i].l,R[i].m,R[i].r,R[i].m,2);RC[k++] = node(R[i].l,R[i].m,R[i].r,R[i].r,3);// cout << i << "l = " << R[i].l << "m = " << R[i].m << "r = " << R[i].r <<endl;}for(int i = 0; i < m; i++) scanf("%d%d",&q[i].l,&q[i].r),q[i].x = q[i].r,q[i].t = i;sort(q,q+m);sort(RC,RC+k);int id = 0;for(int i = 0; i < m; i++){while(id < k && RC[id].x <= q[i].r){if(RC[id].x == q[i].r &&RC[id].t == 3) break;if(RC[id].t == 2){add(0,RC[id].l,1);add(1,RC[id].m,1);}else if(RC[id].t == 3){add(0,RC[id].l,-1);add(1,RC[id].m,-1);}id++;}ans[q[i].t] = getsum(1,q[i].r)-getsum(1,q[i].l-1)-(getsum(0,q[i].r)-getsum(0,q[i].l));}for(int i = 0; i < m; i++){printf("%d\n",ans[i]);}}return 0;
}
这篇关于Rabbit Kingdom HDU - 4777 (离线处理+树状数组)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!