容斥原理(道理很简单,重在实践)

2024-02-17 22:38

本文主要是介绍容斥原理(道理很简单,重在实践),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在组合数学中如何求2或2个以上集合的并集中元素的个数,若这几个集合两两无关,也就是没有交集,可以用加法原理,这个比较好理解,把所有集合的大小加起来就行了。若出现交集,就需要使用容斥原理。

理解

我认为容斥原理就是一个把多算的那块去掉,多去掉的那块补上的过程,可能这么说比较抽象,但确实如此。

这里举个例子:

计数1到600之间不能被6整除的整数个数。

这里600个是包含能被6整除的个数,所以要把多算的那块去掉,从1开始每6个数都有一个可以被6整除,所以600/6 = 100答案就是600-100=500

这个例子是减法原理,但也是容斥原理最简单的例子。

这个例子抽象一下是对于有限集合S,有一个性质p不满足某个性质,那么求满足性质的集合大小。

将这个问题拓展一下,p1,p2,p3…pm不满足某个性质,这些不满足性质的集合对应的是 A i A_i Ai,我们要求满足的集合大小。所求的对象个数可以由下面的交错表达式给出:
∣ A 1 ‾ ⋂ A 2 ‾ ⋂ ⋯ ⋂ A m ‾ ∣ = ∣ S ∣ − ∑ ∣ A i ∣ + ∑ ∣ A i ⋂ A j ∣ − ∑ ∣ A i ⋂ A j ⋂ A k ∣ + ⋯ + ( − 1 ) m ∣ A 1 ⋂ A 2 ⋂ ⋯ ⋂ A m ∣ \mid \overline{A_1}\bigcap\overline{A_2}\bigcap\cdots\bigcap\overline{A_m} \mid =\mid S \mid - \sum{\mid A_i \mid} + \sum{\mid A_i\bigcap A_j \mid} - \sum{\mid A_i\bigcap A_j \bigcap A_k\mid} + \cdots+(-1)^{m}\mid {A_1}\bigcap{A_2}\bigcap\cdots\bigcap{A_m}\mid A1A2Am=SAi+AiAjAiAjAk++(1)mA1A2Am
根据上述的表达式我们可以解决

计数1到1000之间不能被5,6,8整除的整数个数

很明显|S| = 1000

|A1| = 1000/5 = 200

|A2| = 1000/6 = 166

|A3| = 1000/8=125

然后我们要求的交集部分

(A1,A2):1000/lcm(5, 6)=33

(A1,A3):1000/lcm(5, 8)=25

(A1,A2):1000/lcm(6, 8)=33

(A1,A2,A3):1000/lcm(5, 6, 8) = 8

答案:1000-(200+166+125)+(33+25+41)-8=600

题目

一班容斥原理的题目不能直接套那个公式,需要我们真正明白把多算的那块去掉,多去掉的那块补上的过程的含义

The Lottery

UVA - 10325

这道题和上面第二例子一样,只不过不能被N个数整除,只要枚举被1~N个数整除,把所有情况都找出来,套公式即可,这里值得注意的是lcm和gcd都具有结合律,也就是说lcm(a,b,c) = lcm(lcm(a,b),c)

代码

#include <bits/stdc++.h>
using namespace std;typedef long long ll;
const int maxm = 20;
ll num[maxm], n;
ll gcd(ll a, ll b) {return b == 0 ? a : gcd(b, a % b);
}ll lcm(ll a, ll b) {return a / gcd(a, b) * b;
}
int m;
ll ans;
void dfs(int c, int cur, int i, ll now) {if(cur == c) {ans += ((c & 1) ? -1 : 1) * (n/now);return;}while(i < m) {dfs(c, cur+1, i+1, lcm(now, num[i]));i++;}
}
int main()
{// freopen("/Users/maoxiangsun/MyRepertory/acm/i.txt", "r", stdin);while(~scanf("%lld%d", &n, &m)) {for(int i = 0; i < m; i++) {scanf("%lld", num+i);}ans  = n;for(int i = 1; i <= m; i++) {dfs(i, 0, 0, 1);}printf("%lld\n", ans);}return 0;
}

Cheerleaders

UVA - 11806

这道题的意思是一个n*m的方格表,每个方格最多放一个东西,我们要放k个东西,问在上下左右那几条边都有东西的前提下有多少种方式。

也是套那个公式,最后可以推出这样的结果:
a n s = C ( n m , k ) − 2 ( C ( ( n − 1 ) m , k ) + C ( ( m − 1 ) n , k ) ) + ( C ( ( n − 2 ) m , k ) + C ( ( m − 2 ) n , k ) + 4 C ( ( m − 1 ) ( n − 1 ) , k ) − 2 C ( m − 2 ) ( n − 1 ) , k ) − 2 C ( C ( m − 1 ) ( n − 2 ) , k ) + C ( ( m − 2 ) ( n − 2 ) , k ) ; ans = C(nm, k) -2(C((n-1)m, k)+C((m-1)n,k))\\ +(C((n-2)m,k)+C((m-2)n,k)+4C((m-1)(n-1), k)\\ -2C(m-2)(n-1),k)-2C(C(m-1)(n-2),k) +C((m-2)(n-2), k); ans=C(nm,k)2(C((n1)m,k)+C((m1)n,k))+(C((n2)m,k)+C((m2)n,k)+4C((m1)(n1),k)2C(m2)(n1),k)2C(C(m1)(n2),k)+C((m2)(n2),k);
还有就是组合数取模问题,利用杨辉三角那个样子打表处理这种n*m不是很大,比较合适,再不行就用Lucas定理……

#include <bits/stdc++.h>
using namespace std;typedef long long ll;
const ll maxn = 420;
const ll mod = 1000007;
ll CC[maxn][maxn] = {0};
void init() {CC[0][0] = 1;for(ll i = 1; i < maxn; i++) {CC[i][0] = 1;for(ll j = 1; j <= i; j++) {CC[i][j] = (CC[i-1][j-1] + CC[i-1][j])%mod;}}
}
ll C(ll n, ll m) {return CC[n][m];
}
int main()
{ios::sync_with_stdio(false); cin.tie(0);ll n,m,k;ll T; init();cin >> T;int cas=0;while(T--) {cin >> n >> m >> k;ll ans =  (C(n*m,k)-(2*C((n-1)*m, k) + 2*(C(n*(m-1), k)) -C((m-2)*n, k) -C((n-2)*m, k) - 4*C((m-1)*(n-1) , k) + 2*C((m-2)*(n-1), k) + 2*C((m-1)*(n-2),k)-C((m-2)*(n-2), k) ) );while(ans < 0) {ans += mod;}cout << "Case "<<++cas<<": ";cout << ans % mod << endl; }return 0;
}

2018山东省赛F题

https://ac.nowcoder.com/acm/contest/123/F

这道题的意思是给出四个区间左右端点li,ri,从中取出x1,x2,x3,x4,问这四个值相邻元素不等的取法有多少种,可以用容斥想,S-不符合条件的总数。

情况1,只考虑两两相邻相等,可以分出四组来

情况2,在三个相邻相等和x1=x2&&x3=x4与x2=x3&&x1=x4公6组,不难发现在情况1中包含了情况2的可能所以要把多去的情况1加上去,加多少呢?加一倍,为啥?比如情况1在计算x1=x2的数量时已经计算了x3=x4的数量,而x3=x4的数量时又计算了x1=x2所以计算了两遍x1=x2&&x3=x4

情况3,x1=x2=x3=x4

这是最容易错的地方,我已开始做也是因为这wa了,为啥,情况1多算4次,情况2把6次减去了,情况3需要1次所以需要加上3倍的情况3才行!

代码:

#include <bits/stdc++.h>
using namespace std;typedef long long ll;
ll ans;
ll l[5],r[5];
const ll mod = 1e9 + 7;int main()
{int T; scanf("%d", &T);while(T--) {ans = 1;for(int i = 0; i < 4; i++) {// cin >> l[i] >> r[i];scanf("%lld%lld", &l[i], &r[i]);ans = ans * (r[i] - l[i] + 1) % mod;}ll left, right;for(int i = 0; i < 4; i++) {left = max(l[i], l[(i+1)%4]);right = min(r[i], r[(i+1)%4]);if(right >= left) ans=((ans-(right-left+1)*(r[(i+2)%4]-l[(i+2)%4]+1)%mod*(r[(i+3)%4]-l[(i+3)%4]+1)%mod)%mod+mod)%mod;} for(int i = 0; i < 4; i++) {left = max(l[i], max(l[(i+1)%4], l[(i+2)%4]));right = min(r[i], min(r[(i+1)%4], r[(i+2)%4]));if(right >= left) ans = (ans + (right - left + 1) * (r[(i+3)%4] - l[(i+3)%4] + 1)%mod)%mod;}ll l1,l2,r1,r2;for(int i = 0; i < 2; i++) {l1 = max(l[i], l[i+1]);r1 = min(r[i], r[i+1]);l2 = max(l[(i+2)%4], l[(i+3)%4]);r2 = min(r[(i+2)%4], r[(i+3)%4]);if(l1 <= r1 && l2 <= r2) {ans = (ans + (r1-l1+1)*(r2-l2+1)%mod)%mod;}}left = l[0];right = r[0];for(int i = 1; i < 4; i++) {left = max(l[i], left);right = min(r[i], right);}if(right >= left) {ans = (ans - (3*(right - left + 1))%mod + mod ) % mod;}printf("%lld\n", ans);}   return 0;
}

总结

容斥原理这类题难得地方在于理解模型中集合与集合的公共部分,不要盲目的套公式!

这篇关于容斥原理(道理很简单,重在实践)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/719196

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶