Spark中多分区写文件前可以不排序么

2024-02-16 13:52
文章标签 排序 分区 spark 中多

本文主要是介绍Spark中多分区写文件前可以不排序么,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

Spark 3.5.0
目前 Spark中的实现中,对于多分区的写入默认会先排序,这是没必要的。可以设置spark.sql.maxConcurrentOutputFileWriters 为大于0来避免排序。

分析

这部分主要分为三个部分:
一个是V1Writes规则的重改;
另一个是FileFormatWriter中的dataWriter的选择;
还有一个是Spark中为什么会加上Sort
这三部分是需要结合在一起分析讨论的

V1Writes规则的重改

直接转到代码部分:

object V1Writes extends Rule[LogicalPlan] with SQLConfHelper {import V1WritesUtils._override def apply(plan: LogicalPlan): LogicalPlan = {if (conf.plannedWriteEnabled) {plan.transformUp {case write: V1WriteCommand if !write.child.isInstanceOf[WriteFiles] =>val newQuery = prepareQuery(write, write.query)val attrMap = AttributeMap(write.query.output.zip(newQuery.output))val writeFiles = WriteFiles(newQuery, write.fileFormat, write.partitionColumns,write.bucketSpec, write.options, write.staticPartitions)val newChild = writeFiles.transformExpressions {case a: Attribute if attrMap.contains(a) =>a.withExprId(attrMap(a).exprId)}val newWrite = write.withNewChildren(newChild :: Nil).transformExpressions {case a: Attribute if attrMap.contains(a) =>a.withExprId(attrMap(a).exprId)}newWrite}} else {plan}}

其中 prepareQuery是对满足条件的计划前加上Sort逻辑排序,其中prepareQuery关键的代码如下:

    val requiredOrdering = write.requiredOrdering.map(_.transform {case a: Attribute => attrMap.getOrElse(a, a)}.asInstanceOf[SortOrder])val outputOrdering = empty2NullPlan.outputOrderingval orderingMatched = isOrderingMatched(requiredOrdering.map(_.child), outputOrdering)if (orderingMatched) {empty2NullPlan} else {Sort(requiredOrdering, global = false, empty2NullPlan)}

write.requiredOrdering中涉及到的类为InsertIntoHadoopFsRelationCommandInsertIntoHiveTable,且这两个物理计划中的requiredOrdering实现都是:

V1WritesUtils.getSortOrder(outputColumns, partitionColumns, bucketSpec, options)

getSortOrder方法关键代码如下:

    val sortColumns = V1WritesUtils.getBucketSortColumns(bucketSpec, dataColumns)if (SQLConf.get.maxConcurrentOutputFileWriters > 0 && sortColumns.isEmpty) {// Do not insert logical sort when concurrent output writers are enabled.Seq.empty} else {// We should first sort by dynamic partition columns, then bucket id, and finally sorting// columns.(dynamicPartitionColumns ++ writerBucketSpec.map(_.bucketIdExpression) ++ sortColumns).map(SortOrder(_, Ascending))}

所以说 如果 spark.sql.maxConcurrentOutputFileWriters为0(默认值为0),则会加上Sort逻辑计划,具体的实现可以参考SPARK-37287
如果spark.sql.maxConcurrentOutputFileWriters为0(默认值为0)且 sortColumns为空(大部分情况下为空,除非建表是partition加上bucket),则不会加上Sort逻辑计划

FileFormatWriter 中的dataWriter的选择

InsertIntoHadoopFsRelationCommandInsertIntoHiveTable 这两个物理计划中,最终写入文件/数据的时候,会调用到FileFormatWriter.write方法,这里有个concurrentOutputWriterSpecFunc函数变量的设置:

      val concurrentOutputWriterSpecFunc = (plan: SparkPlan) => {val sortPlan = createSortPlan(plan, requiredOrdering, outputSpec)createConcurrentOutputWriterSpec(sparkSession, sortPlan, sortColumns)}val writeSpec = WriteFilesSpec(description = description,committer = committer,concurrentOutputWriterSpecFunc = concurrentOutputWriterSpecFunc)executeWrite(sparkSession, plan, writeSpec, job)

设置concurrentOutputWriterSpecFunc的代码如下:

  private def createConcurrentOutputWriterSpec(sparkSession: SparkSession,sortPlan: SortExec,sortColumns: Seq[Attribute]): Option[ConcurrentOutputWriterSpec] = {val maxWriters = sparkSession.sessionState.conf.maxConcurrentOutputFileWritersval concurrentWritersEnabled = maxWriters > 0 && sortColumns.isEmptyif (concurrentWritersEnabled) {Some(ConcurrentOutputWriterSpec(maxWriters, () => sortPlan.createSorter()))} else {None}}

如果 spark.sql.maxConcurrentOutputFileWriters为0(默认值为0),则ConcurrentOutputWriterSpec为None
如果 spark.sql.maxConcurrentOutputFileWriters大于0sortColumns为空(大部分情况下为空,除非建表是partition加上bucket),则为Some(ConcurrentOutputWriterSpec(maxWriters, () => sortPlan.createSorter())

其中executeWrite会调用WriteFilesExec.doExecuteWrite方法,从而调用FileFormatWriter.executeTask,这里就涉及到dataWriter选择:

    val dataWriter =if (sparkPartitionId != 0 && !iterator.hasNext) {// In case of empty job, leave first partition to save meta for file format like parquet.new EmptyDirectoryDataWriter(description, taskAttemptContext, committer)} else if (description.partitionColumns.isEmpty && description.bucketSpec.isEmpty) {new SingleDirectoryDataWriter(description, taskAttemptContext, committer)} else {concurrentOutputWriterSpec match {case Some(spec) =>new DynamicPartitionDataConcurrentWriter(description, taskAttemptContext, committer, spec)case _ =>new DynamicPartitionDataSingleWriter(description, taskAttemptContext, committer)}}

这里其实会根据 concurrentOutputWriterSpec来选择不同的dataWriter,默认情况下为DynamicPartitionDataSingleWriter
否则就会为DynamicPartitionDataConcurrentWriter
这两者的区别,见下文

Spark中为什么会加上Sort

至于Spark在写入文件的时候会加上Sort,这个是跟写入的实现有关的,也就是DynamicPartitionDataSingleWriterDynamicPartitionDataConcurrentWriter的区别:

  • DynamicPartitionDataSingleWriter 在任何时刻,只有一个writer在写文件,这能保证写入的稳定性,不会在写入文件的时候消耗大量的内存,但是速度会慢
  • DynamicPartitionDataConcurrentWriter 会有多个 writer 同时写文件,能加快写入文件的速度,但是因为多个文件的同时写入,可能会导致OOM

对于DynamicPartitionDataSingleWriter 会根据partition或者bucket作为最细粒度来作为writer的标准,如果相邻的两条记录所属不同的partition或者bucket,则会切换writer,所以说如果不根据partition或者bucket排序的话,会导致writer频繁的切换,这会大大降低文件的写入速度。所以说需要根据partition或者bucket进行排序。

参考

  1. [SPARK-37287][SQL] Pull out dynamic partition and bucket sort from FileFormatWriter
  2. [SQL] Allow FileFormatWriter to write multiple partitions/buckets without sort

这篇关于Spark中多分区写文件前可以不排序么的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/714721

相关文章

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

Python中lambda排序的六种方法

《Python中lambda排序的六种方法》本文主要介绍了Python中使用lambda函数进行排序的六种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录1.对单个变量进行排序2. 对多个变量进行排序3. 降序排列4. 单独降序1.对单个变量进行排序

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c