nyoj927The partial sum problem(DFS)

2024-02-16 11:08

本文主要是介绍nyoj927The partial sum problem(DFS),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

The partial sum problem

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 2
描述
One day,Tom’s girlfriend give him an array A which contains N integers and asked him:Can you choose some integers from the N integers and the sum of them is equal to K. 
输入
There are multiple test cases.
Each test case contains three lines.The first line is an integer N(1≤N≤20),represents the array contains N integers. The second line contains N integers,the ith integer represents A[i](-10^8≤A[i]≤10^8).The third line contains an integer K(-10^8≤K≤10^8).
输出
If Tom can choose some integers from the array and their them is K,printf ”Of course,I can!”; other printf ”Sorry,I can’t!”.
样例输入
4
1 2 4 7
13
4
1 2 4 7
15
样例输出
Of course,I can!

Sorry,I can't!



#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[25];
int n,k;
bool dfs(int i,int sum)
{if(i==n) return sum==k;if(dfs(i+1,sum)) return true;if(dfs(i+1,sum+a[i])) return true;return false;
}
int main()
{while(scanf("%d",&n)!=EOF){for(int i=0;i<n;i++){scanf("%d",&a[i]);}scanf("%d",&k);if(dfs(0,0)) printf("Of course,I can!\n");else printf("Sorry,I can't!\n");}return 0;
}


这篇关于nyoj927The partial sum problem(DFS)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/714349

相关文章

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

hdu 2489 (dfs枚举 + prim)

题意: 对于一棵顶点和边都有权值的树,使用下面的等式来计算Ratio 给定一个n 个顶点的完全图及它所有顶点和边的权值,找到一个该图含有m 个顶点的子图,并且让这个子图的Ratio 值在所有m 个顶点的树中最小。 解析: 因为数据量不大,先用dfs枚举搭配出m个子节点,算出点和,然后套个prim算出边和,每次比较大小即可。 dfs没有写好,A的老泪纵横。 错在把index在d

poj 3050 dfs + set的妙用

题意: 给一个5x5的矩阵,求由多少个由连续6个元素组成的不一样的字符的个数。 解析: dfs + set去重搞定。 代码: #include <iostream>#include <cstdio>#include <set>#include <cstdlib>#include <algorithm>#include <cstring>#include <cm

最大流=最小割=最小点权覆盖集=sum-最大点权独立集

二分图最小点覆盖和最大独立集都可以转化为最大匹配求解。 在这个基础上,把每个点赋予一个非负的权值,这两个问题就转化为:二分图最小点权覆盖和二分图最大点权独立集。   二分图最小点权覆盖     从x或者y集合中选取一些点,使这些点覆盖所有的边,并且选出来的点的权值尽可能小。 建模:     原二分图中的边(u,v)替换为容量为INF的有向边(u,v),设立源点s和汇点t

ural 1149. Sinus Dances dfs

1149. Sinus Dances Time limit: 1.0 second Memory limit: 64 MB Let  An = sin(1–sin(2+sin(3–sin(4+…sin( n))…) Let  Sn = (…( A 1+ n) A 2+ n–1) A 3+…+2) An+1 For given  N print  SN Input One

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

深度优先(DFS)和广度优先(BFS)——算法

深度优先 深度优先搜索算法(英语:Depth-First-Search,DFS)是一种用于遍历或搜索树或图的算法。 沿着树的深度遍历树的节点,尽可能深的搜索树的分支,当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访

如何导入sun.misc.BASE64Encoder和sum.misc.BASE64Decoder

右击项目名--->Build Path--->Configure Build Path...--->java Build Path--->Access rules:1 rule defined,added to all librar...   --->Edit --->Add...

nyoj99(并查集+欧拉路+dfs)

单词拼接 时间限制: 3000 ms  |  内存限制: 65535 KB 难度: 5 描述 给你一些单词,请你判断能否把它们首尾串起来串成一串。 前一个单词的结尾应该与下一个单词的道字母相同。 如 aloha dog arachnid gopher tiger rat   可以拼接成:aloha.arachnid.dog.gopher.rat.tiger 输入 第一行是一个整