【Deep Learning】【Andrew Ng】- 编程题(Week 2——Python Basics with Numpy)

2024-02-16 02:58

本文主要是介绍【Deep Learning】【Andrew Ng】- 编程题(Week 2——Python Basics with Numpy),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python Basics with Numpy (optional assignment)

Welcome to your first assignment. This exercise gives you a brief introduction to Python. Even if you’ve used Python before, this will help familiarize you with functions we’ll need.

Instructions:
- You will be using Python 3.
- Avoid using for-loops and while-loops, unless you are explicitly told to do so.
- Do not modify the (# GRADED FUNCTION [function name]) comment in some cells. Your work would not be graded if you change this. Each cell containing that comment should only contain one function.
- After coding your function, run the cell right below it to check if your result is correct.

After this assignment you will:
- Be able to use iPython Notebooks
- Be able to use numpy functions and numpy matrix/vector operations
- Understand the concept of “broadcasting”
- Be able to vectorize code

Let’s get started!

About iPython Notebooks

iPython Notebooks are interactive coding environments embedded in a webpage. You will be using iPython notebooks in this class. You only need to write code between the ### START CODE HERE ### and ### END CODE HERE ### comments. After writing your code, you can run the cell by either pressing “SHIFT”+”ENTER” or by clicking on “Run Cell” (denoted by a play symbol) in the upper bar of the notebook.

We will often specify “(≈ X lines of code)” in the comments to tell you about how much code you need to write. It is just a rough estimate, so don’t feel bad if your code is longer or shorter.

Exercise: Set test to "Hello World" in the cell below to print “Hello World” and run the two cells below.

### START CODE HERE ### (≈ 1 line of code)
test = "Hello World"
### END CODE HERE ###
print ("test: " + test)
test: Hello World

Expected output:
test: Hello World


What you need to remember:
- Run your cells using SHIFT+ENTER (or “Run cell”)
- Write code in the designated areas using Python 3 only
- Do not modify the code outside of the designated areas

1 - Building basic functions with numpy

Numpy is the main package for scientific computing in Python. It is maintained by a large community (www.numpy.org). In this exercise you will learn several key numpy functions such as np.exp, np.log, and np.reshape. You will need to know how to use these functions for future assignments.

1.1 - sigmoid function, np.exp()

Before using np.exp(), you will use math.exp() to implement the sigmoid function. You will then see why np.exp() is preferable to math.exp().

Exercise: Build a function that returns the sigmoid of a real number x. Use math.exp(x) for the exponential function.

Reminder:
sigmoid(x)=11+ex s i g m o i d ( x ) = 1 1 + e − x is sometimes also known as the logistic function. It is a non-linear function used not only in Machine Learning (Logistic Regression), but also in Deep Learning.

To refer to a function belonging to a specific package you could call it using package_name.function(). Run the code below to see an example with math.exp().

# GRADED FUNCTION: basic_sigmoidimport mathdef basic_sigmoid(x):"""Compute sigmoid of x.Arguments:x -- A scalarReturn:s -- sigmoid(x)"""### START CODE HERE ### (≈ 1 line of code)s = 1/(1+math.exp(-x))### END CODE HERE ###return s
basic_sigmoid(3)
0.9525741268224334

Expected Output:

** basic_sigmoid(3) **0.9525741268224334

Actually, we rarely use the “math” library in deep learning because the inputs of the functions are real numbers. In deep learning we mostly use matrices and vectors. This is why numpy is more useful.

### One reason why we use "numpy" instead of "math" in Deep Learning ###
x = [1, 2, 3]
basic_sigmoid(x) # you will see this give an error when you run it, because x is a vector.
---------------------------------------------------------------------------TypeError                                 Traceback (most recent call last)<ipython-input-5-2e11097d6860> in <module>()1 ### One reason why we use "numpy" instead of "math" in Deep Learning ###2 x = [1, 2, 3]
----> 3 basic_sigmoid(x) # you will see this give an error when you run it, because x is a vector.<ipython-input-3-951c5721dbfa> in basic_sigmoid(x)15 16     ### START CODE HERE ### (≈ 1 line of code)
---> 17     s = 1/(1+math.exp(-x))18     ### END CODE HERE ###19 TypeError: bad operand type for unary -: 'list'

In fact, if x=(x1,x2,...,xn) x = ( x 1 , x 2 , . . . , x n ) is a row vector then np.exp(x) n p . e x p ( x ) will apply the exponential function to every element of x. The output will thus be: np.exp(x)=(ex1,ex2,...,exn) n p . e x p ( x ) = ( e x 1 , e x 2 , . . . , e x n )

import numpy as np# example of np.exp
x = np.array([1, 2, 3])
print(np.exp(x)) # result is (exp(1), exp(2), exp(3))
[  2.71828183   7.3890561   20.08553692]

Furthermore, if x is a vector, then a Python operation such as s=x+3 s = x + 3 or s=1x s = 1 x will output s as a vector of the same size as x.

# example of vector operation
x = np.array([1, 2, 3])
print (x + 3)
[4 5 6]

Any time you need more info on a numpy function, we encourage you to look at the official documentation.

You can also create a new cell in the notebook and write np.exp? (for example) to get quick access to the documentation.

Exercise: Implement the sigmoid function using numpy.

Instructions: x could now be either a real number, a vector, or a matrix. The data structures we use in numpy to represent these shapes (vectors, matrices…) are called numpy arrays. You don’t need to know more for now.

For xRnsigmoid(x)=sigmoidx1x2...xn=11+ex111+ex2...11+exn(1) (1) For  x ∈ R n ,  s i g m o i d ( x ) = s i g m o i d ( x 1 x 2 . . . x n ) = ( 1 1 + e − x 1 1 1 + e − x 2 . . . 1 1 + e − x n )

# GRADED FUNCTION: sigmoidimport numpy as np # this means you can access numpy functions by writing np.function() instead of numpy.function()def sigmoid(x):"""Compute the sigmoid of xArguments:x -- A scalar or numpy array of any sizeReturn:s -- sigmoid(x)"""### START CODE HERE ### (≈ 1 line of code)s = 1/(1+np.exp(-x))### END CODE HERE ###return s
x = np.array([1, 2, 3])
sigmoid(x)
array([ 0.73105858,  0.88079708,  0.95257413])

Expected Output:

**sigmoid([1,2,3])** array([ 0.73105858, 0.88079708, 0.95257413])

1.2 - Sigmoid gradient

As you’ve seen in lecture, you will need to compute gradients to optimize loss functions using backpropagation. Let’s code your first gradient function.

Exercise: Implement the function sigmoid_grad() to compute the gradient of the sigmoid function with respect to its input x. The formula is:

sigmoid_derivative(x)=σ(x)=σ(x)(1σ(x))(2) (2) s i g m o i d _ d e r i v a t i v e ( x ) = σ ′ ( x ) = σ ( x ) ( 1 − σ ( x ) )

You often code this function in two steps:
1. Set s to be the sigmoid of x. You might find your sigmoid(x) function useful.
2. Compute σ(x)=s(1s) σ ′ ( x ) = s ( 1 − s )

# GRADED FUNCTION: sigmoid_derivativedef sigmoid_derivative(x):"""Compute the gradient (also called the slope or derivative) of the sigmoid function with respect to its input x.You can store the output of the sigmoid function into variables and then use it to calculate the gradient.Arguments:x -- A scalar or numpy arrayReturn:ds -- Your computed gradient."""### START CODE HERE ### (≈ 2 lines of code)s = sigmoid(x)ds = s*(1-s)### END CODE HERE ###return ds
x = np.array([1, 2, 3])
print ("sigmoid_derivative(x) = " + str(sigmoid_derivative(x)))
sigmoid_derivative(x) = [ 0.19661193  0.10499359  0.04517666]

Expected Output:

**sigmoid_derivative([1,2,3])** [ 0.19661193 0.10499359 0.04517666]

1.3 - Reshaping arrays

Two common numpy functions used in deep learning are np.shape and np.reshape().
- X.shape is used to get the shape (dimension) of a matrix/vector X.
- X.reshape(…) is used to reshape X into some other dimension.

For example, in computer science, an image is represented by a 3D array of shape (length,height,depth=3) ( l e n g t h , h e i g h t , d e p t h = 3 ) . However, when you read an image as the input of an algorithm you convert it to a vector of shape (lengthheight3,1) ( l e n g t h ∗ h e i g h t ∗ 3 , 1 ) . In other words, you “unroll”, or reshape, the 3D array into a 1D vector.

Exercise: Implement image2vector() that takes an input of shape (length, height, 3) and returns a vector of shape (length*height*3, 1). For example, if you would like to reshape an array v of shape (a, b, c) into a vector of shape (a*b,c) you would do:

v = v.reshape((v.shape[0]*v.shape[1], v.shape[2])) # v.shape[0] = a ; v.shape[1] = b ; v.shape[2] = c
  • Please don’t hardcode the dimensions of image as a constant. Instead look up the quantities you need with image.shape[0], etc.
# GRADED FUNCTION: image2vector
def image2vector(image):"""Argument:image -- a numpy array of shape (length, height, depth)Returns:v -- a vector of shape (length*height*depth, 1)"""### START CODE HERE ### (≈ 1 line of code)v = image.reshape((image.shape[0]*image.shape[1]*image.shape[2],1))### END CODE HERE ###return v
# This is a 3 by 3 by 2 array, typically images will be (num_px_x, num_px_y,3) where 3 represents the RGB values
image = np.array([[[ 0.67826139,  0.29380381],[ 0.90714982,  0.52835647],[ 0.4215251 ,  0.45017551]],[[ 0.92814219,  0.96677647],[ 0.85304703,  0.52351845],[ 0.19981397,  0.27417313]],[[ 0.60659855,  0.00533165],[ 0.10820313,  0.49978937],[ 0.34144279,  0.94630077]]])print ("image2vector(image) = " + str(image2vector(image)))
image2vector(image) = [[ 0.67826139][ 0.29380381][ 0.90714982][ 0.52835647][ 0.4215251 ][ 0.45017551][ 0.92814219][ 0.96677647][ 0.85304703][ 0.52351845][ 0.19981397][ 0.27417313][ 0.60659855][ 0.00533165][ 0.10820313][ 0.49978937][ 0.34144279][ 0.94630077]]

Expected Output:

**image2vector(image)** [[ 0.67826139] [ 0.29380381] [ 0.90714982] [ 0.52835647] [ 0.4215251 ] [ 0.45017551] [ 0.92814219] [ 0.96677647] [ 0.85304703] [ 0.52351845] [ 0.19981397] [ 0.27417313] [ 0.60659855] [ 0.00533165] [ 0.10820313] [ 0.49978937] [ 0.34144279] [ 0.94630077]]

1.4 - Normalizing rows

Another common technique we use in Machine Learning and Deep Learning is to normalize our data. It often leads to a better performance because gradient descent converges faster after normalization. Here, by normalization we mean changing x to xx x ‖ x ‖ (dividing each row vector of x by its norm).

For example, if

x=[023644](3) (3) x = [ 0 3 4 2 6 4 ]
then
x=np.linalg.norm(x,axis=1,keepdims=True)=[556](4) (4) ‖ x ‖ = n p . l i n a l g . n o r m ( x , a x i s = 1 , k e e p d i m s = T r u e ) = [ 5 56 ]
and
x_normalized=xx=[02563565645456](5) (5) x _ n o r m a l i z e d = x ‖ x ‖ = [ 0 3 5 4 5 2 56 6 56 4 56 ]
Note that you can divide matrices of different sizes and it works fine: this is called broadcasting and you’re going to learn about it in part 5.

Exercise: Implement normalizeRows() to normalize the rows of a matrix. After applying this function to an input matrix x, each row of x should be a vector of unit length (meaning length 1).

# GRADED FUNCTION: normalizeRowsdef normalizeRows(x):"""Implement a function that normalizes each row of the matrix x (to have unit length).Argument:x -- A numpy matrix of shape (n, m)Returns:x -- The normalized (by row) numpy matrix. You are allowed to modify x."""### START CODE HERE ### (≈ 2 lines of code)# Compute x_norm as the norm 2 of x. Use np.linalg.norm(..., ord = 2, axis = ..., keepdims = True)x_norm = np.linalg.norm(x,axis = 1, keepdims = True)# Divide x by its norm.x = x/x_norm### END CODE HERE ###return x
x = np.array([[0, 3, 4],[1, 6, 4]])
print("normalizeRows(x) = " + str(normalizeRows(x)))
normalizeRows(x) = [[ 0.          0.6         0.8       ][ 0.13736056  0.82416338  0.54944226]]

Expected Output:

**normalizeRows(x)** [[ 0. 0.6 0.8 ] [ 0.13736056 0.82416338 0.54944226]]

Note:
In normalizeRows(), you can try to print the shapes of x_norm and x, and then rerun the assessment. You’ll find out that they have different shapes. This is normal given that x_norm takes the norm of each row of x. So x_norm has the same number of rows but only 1 column. So how did it work when you divided x by x_norm? This is called broadcasting and we’ll talk about it now!

1.5 - Broadcasting and the softmax function

A very important concept to understand in numpy is “broadcasting”. It is very useful for performing mathematical operations between arrays of different shapes. For the full details on broadcasting, you can read the official broadcasting documentation.

Exercise: Implement a softmax function using numpy. You can think of softmax as a normalizing function used when your algorithm needs to classify two or more classes. You will learn more about softmax in the second course of this specialization.

Instructions:
- for xR1×nsoftmax(x)=softmax([x1x2xn])=[ex1jexjex2jexj...exnjexj] for  x ∈ R 1 × n ,  s o f t m a x ( x ) = s o f t m a x ( [ x 1 x 2 … x n ] ) = [ e x 1 ∑ j e x j e x 2 ∑ j e x j . . . e x n ∑ j e x j ]

  • for a matrix xRm×nxij maps to the element in the ith row and jth column of x, thus we have:  for a matrix  x ∈ R m × n ,  x i j maps to the element in the  i t h row and  j t h column of  x , thus we have: 
    softmax(x)=softmaxx11x21xm1x12x22xm2x13x23xm3x1nx2nxmn=ex11jex1jex21jex2jexm1jexmjex12jex1jex22jex2jexm2jexmjex13jex1jex23jex2jexm3jexmjex1njex1jex2njex2jexmnjexmj=softmax(first row of x)softmax(second row of x)...softmax(last row of x) s o f t m a x ( x ) = s o f t m a x [ x 11 x 12 x 13 … x 1 n x 21 x 22 x 23 … x 2 n ⋮ ⋮ ⋮ ⋱ ⋮ x m 1 x m 2 x m 3 … x m n ] = [ e x 11 ∑ j e x 1 j e x 12 ∑ j e x 1 j e x 13 ∑ j e x 1 j … e x 1 n ∑ j e x 1 j e x 21 ∑ j e x 2 j e x 22 ∑ j e x 2 j e x 23 ∑ j e x 2 j … e x 2 n ∑ j e x 2 j ⋮ ⋮ ⋮ ⋱ ⋮ e x m 1 ∑ j e x m j e x m 2 ∑ j e x m j e x m 3 ∑ j e x m j … e x m n ∑ j e x m j ] = ( s o f t m a x (first row of x) s o f t m a x (second row of x) . . . s o f t m a x (last row of x) )
# GRADED FUNCTION: softmaxdef softmax(x):"""Calculates the softmax for each row of the input x.Your code should work for a row vector and also for matrices of shape (n, m).Argument:x -- A numpy matrix of shape (n,m)Returns:s -- A numpy matrix equal to the softmax of x, of shape (n,m)"""### START CODE HERE ### (≈ 3 lines of code)# Apply exp() element-wise to x. Use np.exp(...).x_exp = np.exp(x)# Create a vector x_sum that sums each row of x_exp. Use np.sum(..., axis = 1, keepdims = True).x_sum = np.sum(x_exp, axis = 1, keepdims = True)# Compute softmax(x) by dividing x_exp by x_sum. It should automatically use numpy broadcasting.s = x_exp/x_sum### END CODE HERE ###return s
x = np.array([[9, 2, 5, 0, 0],[7, 5, 0, 0 ,0]])
print("softmax(x) = " + str(softmax(x)))
softmax(x) = [[  9.80897665e-01   8.94462891e-04   1.79657674e-02   1.21052389e-041.21052389e-04][  8.78679856e-01   1.18916387e-01   8.01252314e-04   8.01252314e-048.01252314e-04]]

Expected Output:

**softmax(x)** [[ 9.80897665e-01 8.94462891e-04 1.79657674e-02 1.21052389e-04 1.21052389e-04] [ 8.78679856e-01 1.18916387e-01 8.01252314e-04 8.01252314e-04 8.01252314e-04]]

Note:
- If you print the shapes of x_exp, x_sum and s above and rerun the assessment cell, you will see that x_sum is of shape (2,1) while x_exp and s are of shape (2,5). x_exp/x_sum works due to python broadcasting.

Congratulations! You now have a pretty good understanding of python numpy and have implemented a few useful functions that you will be using in deep learning.


What you need to remember:
- np.exp(x) works for any np.array x and applies the exponential function to every coordinate
- the sigmoid function and its gradient
- image2vector is commonly used in deep learning
- np.reshape is widely used. In the future, you’ll see that keeping your matrix/vector dimensions straight will go toward eliminating a lot of bugs.
- numpy has efficient built-in functions
- broadcasting is extremely useful

2) Vectorization

In deep learning, you deal with very large datasets. Hence, a non-computationally-optimal function can become a huge bottleneck in your algorithm and can result in a model that takes ages to run. To make sure that your code is computationally efficient, you will use vectorization. For example, try to tell the difference between the following implementations of the dot/outer/elementwise product.

import timex1 = [9, 2, 5, 0, 0, 7, 5, 0, 0, 0, 9, 2, 5, 0, 0]
x2 = [9, 2, 2, 9, 0, 9, 2, 5, 0, 0, 9, 2, 5, 0, 0]### CLASSIC DOT PRODUCT OF VECTORS IMPLEMENTATION ###
tic = time.process_time()
dot = 0
for i in range(len(x1)):dot+= x1[i]*x2[i]
toc = time.process_time()
print ("dot = " + str(dot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")### CLASSIC OUTER PRODUCT IMPLEMENTATION ###
tic = time.process_time()
outer = np.zeros((len(x1),len(x2))) # we create a len(x1)*len(x2) matrix with only zeros
for i in range(len(x1)):for j in range(len(x2)):outer[i,j] = x1[i]*x2[j]
toc = time.process_time()
print ("outer = " + str(outer) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")### CLASSIC ELEMENTWISE IMPLEMENTATION ###
tic = time.process_time()
mul = np.zeros(len(x1))
for i in range(len(x1)):mul[i] = x1[i]*x2[i]
toc = time.process_time()
print ("elementwise multiplication = " + str(mul) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")### CLASSIC GENERAL DOT PRODUCT IMPLEMENTATION ###
W = np.random.rand(3,len(x1)) # Random 3*len(x1) numpy array
tic = time.process_time()
gdot = np.zeros(W.shape[0])
for i in range(W.shape[0]):for j in range(len(x1)):gdot[i] += W[i,j]*x1[j]
toc = time.process_time()
print ("gdot = " + str(gdot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")
dot = 278----- Computation time = 0.1532290000001435ms
outer = [[ 81.  18.  18.  81.   0.  81.  18.  45.   0.   0.  81.  18.  45.   0.0.][ 18.   4.   4.  18.   0.  18.   4.  10.   0.   0.  18.   4.  10.   0.0.][ 45.  10.  10.  45.   0.  45.  10.  25.   0.   0.  45.  10.  25.   0.0.][  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.0.][  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.0.][ 63.  14.  14.  63.   0.  63.  14.  35.   0.   0.  63.  14.  35.   0.0.][ 45.  10.  10.  45.   0.  45.  10.  25.   0.   0.  45.  10.  25.   0.0.][  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.0.][  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.0.][  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.0.][ 81.  18.  18.  81.   0.  81.  18.  45.   0.   0.  81.  18.  45.   0.0.][ 18.   4.   4.  18.   0.  18.   4.  10.   0.   0.  18.   4.  10.   0.0.][ 45.  10.  10.  45.   0.  45.  10.  25.   0.   0.  45.  10.  25.   0.0.][  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.0.][  0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.0.]]----- Computation time = 0.33789499999992145ms
elementwise multiplication = [ 81.   4.  10.   0.   0.  63.  10.   0.   0.   0.  81.   4.  25.   0.   0.]----- Computation time = 0.2120250000001711ms
gdot = [ 24.64266391  16.57052896  28.41185115]----- Computation time = 0.2454160000000538ms
x1 = [9, 2, 5, 0, 0, 7, 5, 0, 0, 0, 9, 2, 5, 0, 0]
x2 = [9, 2, 2, 9, 0, 9, 2, 5, 0, 0, 9, 2, 5, 0, 0]### VECTORIZED DOT PRODUCT OF VECTORS ###
tic = time.process_time()
dot = np.dot(x1,x2)
toc = time.process_time()
print ("dot = " + str(dot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")### VECTORIZED OUTER PRODUCT ###
tic = time.process_time()
outer = np.outer(x1,x2)
toc = time.process_time()
print ("outer = " + str(outer) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")### VECTORIZED ELEMENTWISE MULTIPLICATION ###
tic = time.process_time()
mul = np.multiply(x1,x2)
toc = time.process_time()
print ("elementwise multiplication = " + str(mul) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")### VECTORIZED GENERAL DOT PRODUCT ###
tic = time.process_time()
dot = np.dot(W,x1)
toc = time.process_time()
print ("gdot = " + str(dot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")
dot = 278----- Computation time = 0.19227299999990954ms
outer = [[81 18 18 81  0 81 18 45  0  0 81 18 45  0  0][18  4  4 18  0 18  4 10  0  0 18  4 10  0  0][45 10 10 45  0 45 10 25  0  0 45 10 25  0  0][ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0][ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0][63 14 14 63  0 63 14 35  0  0 63 14 35  0  0][45 10 10 45  0 45 10 25  0  0 45 10 25  0  0][ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0][ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0][ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0][81 18 18 81  0 81 18 45  0  0 81 18 45  0  0][18  4  4 18  0 18  4 10  0  0 18  4 10  0  0][45 10 10 45  0 45 10 25  0  0 45 10 25  0  0][ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0][ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]]----- Computation time = 0.14479999999972293ms
elementwise multiplication = [81  4 10  0  0 63 10  0  0  0 81  4 25  0  0]----- Computation time = 0.11183400000014387ms
gdot = [ 24.64266391  16.57052896  28.41185115]----- Computation time = 0.3255479999999533ms

As you may have noticed, the vectorized implementation is much cleaner and more efficient. For bigger vectors/matrices, the differences in running time become even bigger.

Note that np.dot() performs a matrix-matrix or matrix-vector multiplication. This is different from np.multiply() and the * operator (which is equivalent to .* in Matlab/Octave), which performs an element-wise multiplication.

2.1 Implement the L1 and L2 loss functions

Exercise: Implement the numpy vectorized version of the L1 loss. You may find the function abs(x) (absolute value of x) useful.

Reminder:
- The loss is used to evaluate the performance of your model. The bigger your loss is, the more different your predictions ( y^ y ^ ) are from the true values ( y y ). In deep learning, you use optimization algorithms like Gradient Descent to train your model and to minimize the cost.
- L1 loss is defined as:

(6)L1(y^,y)=i=0m|y(i)y^(i)|

# GRADED FUNCTION: L1def L1(yhat, y):"""Arguments:yhat -- vector of size m (predicted labels)y -- vector of size m (true labels)Returns:loss -- the value of the L1 loss function defined above"""### START CODE HERE ### (≈ 1 line of code)loss = np.sum(abs(yhat - y))### END CODE HERE ###return loss
yhat = np.array([.9, 0.2, 0.1, .4, .9])
y = np.array([1, 0, 0, 1, 1])
print("L1 = " + str(L1(yhat,y)))
L1 = 1.1

Expected Output:

**L1** 1.1

Exercise: Implement the numpy vectorized version of the L2 loss. There are several way of implementing the L2 loss but you may find the function np.dot() useful. As a reminder, if x=[x1,x2,...,xn] x = [ x 1 , x 2 , . . . , x n ] , then np.dot(x,x) = nj=0x2j ∑ j = 0 n x j 2 .

  • L2 loss is defined as
    L2(y^,y)=i=0m(y(i)y^(i))2(7) (7) L 2 ( y ^ , y ) = ∑ i = 0 m ( y ( i ) − y ^ ( i ) ) 2
# GRADED FUNCTION: L2def L2(yhat, y):"""Arguments:yhat -- vector of size m (predicted labels)y -- vector of size m (true labels)Returns:loss -- the value of the L2 loss function defined above"""### START CODE HERE ### (≈ 1 line of code)loss = np.sum(np.dot(yhat-y, yhat - y))### END CODE HERE ###return loss
yhat = np.array([.9, 0.2, 0.1, .4, .9])
y = np.array([1, 0, 0, 1, 1])
print("L2 = " + str(L2(yhat,y)))
L2 = 0.43

Expected Output:

**L2** 0.43

Congratulations on completing this assignment. We hope that this little warm-up exercise helps you in the future assignments, which will be more exciting and interesting!


What to remember:
- Vectorization is very important in deep learning. It provides computational efficiency and clarity.
- You have reviewed the L1 and L2 loss.
- You are familiar with many numpy functions such as np.sum, np.dot, np.multiply, np.maximum, etc…

这篇关于【Deep Learning】【Andrew Ng】- 编程题(Week 2——Python Basics with Numpy)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/713290

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.