DS:树及二叉树的相关概念

2024-02-15 02:20

本文主要是介绍DS:树及二叉树的相关概念,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

                                                 创作不易,兄弟们来波三连吧!! 

一、树的概念及结构

1.1 树的概念

          树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

1、有一个特殊的结点,称为根结点,根节点没有前驱结点
2、除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继(每个孩子只能有一个父亲,每个父亲可以有多个孩子)
3、因此,树是递归定义的。(树可以分成2部分,1部分是父亲节点,1部分是N颗子树,如果子树不是叶子,那么子树可以继续分成父节点和子树

注意:树结构中,子树之间不能有交集,否则就不是树结构!!

1.2 树的相关名词

树的相关名词是依照树加上人类的亲缘关系表述的!

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;

以上标红的是博主认为比较重要的。

1.3 树的表示方法

      树的结构相比较于以往的其他结构就比较复杂了,要存储起来表示就比较有难度,不仅要保存值域,也要保存节点和节点之间的关系。

如果我们知道节点的度,那么我们就可以根据这个度来决定我们的结构体中需要有多少个孩子指针!!但是如果我们不知道节点的度,我们就有了以下方法来表示:

1.3.1 双亲表示法

实现:定义数组结构存放树的结点,每个结点含两个域:
数据域:存放结点本身数据信息。
双亲域:指示本结点的双亲结点在数组中的位置。(可以存放双亲的下标,也可以存放双亲的指针

      这样的存储结构,根据结点parent指针很容易找到它的双亲结点,所用时间复杂度为O(1),直到parent为-1时,找到了树的根结点,但是如果我们想要知道孩子的节点,那么唯一的方法就是遍历!!

特点:找双亲容易,找孩子难 

1.3.2 孩子表示法

具体办法是:把每个结点的孩子结点排列起来,看成是一个线性表,以单链表作存储结构,则n个结点有n个孩子链表(叶子结点的孩子链表为空),然后n个头指针又组成一个线性表,采用顺序存储结构,存放进一个一维数组中

特点:找孩子易,找双亲难

       这样的结构对于我们要查找某个结点的某个孩子,或者找某个结点的兄弟,只需要查找这个结点的孩子单链表即可。对于遍历整棵树也是很方便的,对头结点的数组循环即可。

1.3.3 孩子双亲表示法

就是把上面两种方法结合一下

即在链表表头再增加一个数据域存储双亲的下标,用空间换取方便! 

1.3.4 左孩子右兄弟表示法

但是我们用的最多的还是左孩子右兄弟法,因为相关的结构体只需要1个指向兄弟的指针,1个指向第一个孩子的指针,一个数据域就可以解决问题了!

typedef int DataType;
struct Node
{
struct Node* _firstChild1; // 第一个孩子结点
struct Node* _pNextBrother; // 指向其下一个兄弟结点
DataType _data; // 结点中的数据域
};

1.4 树在实际中的应用

就是文件系统中的目录树结构!!

     我们打开磁盘,在底层就是通过磁盘地孩子指针找到第一个孩子,然后再通过第一个孩子的兄弟指针开始逐个逐个遍历后面的兄弟节点,才能把整个目录给列举出来, 

    如果我们新建一个文件夹,就是让该文件目录下的兄弟节点指向NULL的文件指向这个新建文件,然后新建文件的兄弟指针指向NULL,当然这个也要看情况,有时候文件排序的方式也是不同的

二、二叉树的概念及结构

    实际中我们的树一般只用在这个目录树结构,而我们最常用的是树中的一个比较特殊的群体——二叉树

2.1 二叉树的概念

一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

二叉树的特点:

1、 二叉树不存在度大于2的节点

2、二叉树的左右子树不能颠倒

2.2 特殊的二叉树

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是
说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

2.3 二叉树的性质

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)个结点.

2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1


3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0, 度为2的分支结点个数为n2 ,则有总是有n0=n2+1


4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=log(N+1)(ps: 是log以2
为底,n+1为对数)
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
2. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
3. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

2.4  二叉树的存储方式

2.4.1 顺序存储

          顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

一般来说,顺序存储只适用于完全二叉树!! 

2.4.2 链式存储

        二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链。

先介绍到这里了!!

关于存储方式的详细介绍,后面会发布文章进行学习的

感谢支持!!

 

这篇关于DS:树及二叉树的相关概念的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/710217

相关文章

Redis的Zset类型及相关命令详细讲解

《Redis的Zset类型及相关命令详细讲解》:本文主要介绍Redis的Zset类型及相关命令的相关资料,有序集合Zset是一种Redis数据结构,它类似于集合Set,但每个元素都有一个关联的分数... 目录Zset简介ZADDZCARDZCOUNTZRANGEZREVRANGEZRANGEBYSCOREZ

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

关于Maven生命周期相关命令演示

《关于Maven生命周期相关命令演示》Maven的生命周期分为Clean、Default和Site三个主要阶段,每个阶段包含多个关键步骤,如清理、编译、测试、打包等,通过执行相应的Maven命令,可以... 目录1. Maven 生命周期概述1.1 Clean Lifecycle1.2 Default Li

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

Redis的Hash类型及相关命令小结

《Redis的Hash类型及相关命令小结》edisHash是一种数据结构,用于存储字段和值的映射关系,本文就来介绍一下Redis的Hash类型及相关命令小结,具有一定的参考价值,感兴趣的可以了解一下... 目录HSETHGETHEXISTSHDELHKEYSHVALSHGETALLHMGETHLENHSET

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

两个月冲刺软考——访问位与修改位的题型(淘汰哪一页);内聚的类型;关于码制的知识点;地址映射的相关内容

1.访问位与修改位的题型(淘汰哪一页) 访问位:为1时表示在内存期间被访问过,为0时表示未被访问;修改位:为1时表示该页面自从被装入内存后被修改过,为0时表示未修改过。 置换页面时,最先置换访问位和修改位为00的,其次是01(没被访问但被修改过)的,之后是10(被访问了但没被修改过),最后是11。 2.内聚的类型 功能内聚:完成一个单一功能,各个部分协同工作,缺一不可。 顺序内聚:

log4j2相关配置说明以及${sys:catalina.home}应用

${sys:catalina.home} 等价于 System.getProperty("catalina.home") 就是Tomcat的根目录:  C:\apache-tomcat-7.0.77 <PatternLayout pattern="%d{yyyy-MM-dd HH:mm:ss} [%t] %-5p %c{1}:%L - %msg%n" /> 2017-08-10