数学笔记27——极坐标下的面积

2024-02-14 21:08

本文主要是介绍数学笔记27——极坐标下的面积,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  直角坐标是常用的坐标法,但是对于一些特别的问题,在直角坐标系下处理就显得有点笨拙了。这个时候,不妨试试极坐标。它可以使得问题变得出乎意料的简洁,也能让问题直观和清晰起来。

极坐标

什么是极坐标

  概念来自百度百科:

  在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点M,用r表示线段OM的长度,θ表示从Ox到OM的角度,r叫做点M的极径,θ叫做点M的极角,有序数对 (r,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。通常情况下,M的极径坐标单位为1(长度单位),极角坐标单位为rad(或°)。

  简单地说,极坐标有两个主要部分:长度和方向。

  极坐标仅仅是将直角坐标系的点换了一个表示法,仍未脱离原来的直角坐标系。很容易知道,如果M用x和y表示,那么:

 

  这就是直角坐标系转换为极坐标表示法的转换公式。此外:

 

  实际上距离和夹角都可能是负数,这种写法可以避免和正负号搅合在一起。

  注:在极坐标中,x不再是y的函数,即x不再是变量,这在上篇文章的“新的思维模式”一节做过详细说明。

 

极坐标下的点、直线和圆

 

  

  现在尝试将(x, y) = (1, -1)转换为极坐标表示法:

 

  根据转换公式,可以得到三组答案:

 

  直线

  用极坐标表示直线y = 1。

  y = rsinθ=1, r = 1/sinθ

  这就是结果。这可以用下图表示:

 

  图中每个向量长度都表示r,与x轴的夹角是θ,r = 1/sinθ呈扇形展开,因此也可以知道θ的取值范围是0 ≤ θ ≤ π

 

  圆

  在直角坐标系下,半径为a的圆是x2 + y2 = a2,转换为极坐标后:

  所以可以用r = a表示极坐标系下的圆,当r的取值范围是(-∞, +∞)时,表示极坐标系下的所有点。

r = 1

示例

  用极坐标表示(x – a)2 + y2 = a2

 

  圆心并不在原点。我们可以直接套用公式:

 

  也可以使用一个比较快的方法,先计算,后代入:

 

  还剩下最后一点,θ的取值范围,少了这点,我们就无法对其进行积分。

  当θ = 0时,r的一端在(2a, 0)点;点沿着圆逆时针转动,当θ= π/2时点在(0, 0)处,期间r扫过了上半圆:

同理,当-π/2 <=θ<=0时,r扫过了下半圆。因此,θ的取值范围是[-π/2, π/2]

极坐标下的面积

面积公式

  如上图所示,在已知半径和夹角的情况下很容易求得扇形的面积。

 

  如果是一个不规则曲线形成的面积呢?

 

A = ?

  我们可以利用黎曼和的知识对其进行切分,形成一个个小扇形:

  曲线内的任意扇形:

 

  整个面积:

 

  这也是极坐标下的面积公式。

示例1

  计算r = 2acosθ的面积。

  这在上一节的示例中出现过,如果过退化为直角坐标系,很容易看出是一个圆,其面积是:

  这正是期待的结果。

示例2

  r = sin2θ的面积

  为了更直观地计算面积,首先要画图。

  相面是θ在第一象限内的取值:

  θ = 0, r = 0; θ = π/4, r = 1; θ = π/2, r = 0。

  π/2是一个周期,四个象限的图形应当一致:

  实际上这就是著名的四叶玫瑰函数,它的运动轨迹如下:

 

  当π/2 ≤ θ ≤ π时,曲线向相反方向运动:

 

  现在可以计算面积了。

 


  作者:我是8位的

  出处:http://www.cnblogs.com/bigmonkey

  本文以学习、研究和分享为主,如需转载,请联系本人,标明作者和出处,非商业用途! 

这篇关于数学笔记27——极坐标下的面积的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/709581

相关文章

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit