机器学习和人工智能处于“真空填补期”和“黎明前的黑暗”

2024-02-13 13:50

本文主要是介绍机器学习和人工智能处于“真空填补期”和“黎明前的黑暗”,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:黄广斌
来源:公众号“超限学习机”(授权转载)

机器学习未必就是人工智能

也许把机器学习当作人工智能是个“美丽”的时代错误。人工智能强调的是“人工”创造的“智能”,机器学习是“机器”自主从数据中找出“知识”。当数据少和人能推导控制时,“人工”的特性比较明显,人们会认为机器学习是人工智能的一部分。这种智能“人工”的创造从1950年代到本世纪初尤其明显。没有数据,机器很难学习到充分的知识,人的知识便在智能的实现中起到关键作用。因而许多情况下机器学习是实现人工智能的重要辅助工具。

然而随着数据量,数据复杂度,和应用复杂度指数式增长,机器学习有望独立于人工智能。各种应用和各种数据有其自我特征和规律,将来可能建立机器学习科学,从而更加科学地实现机器学习,这可能也有人工参与应用这种科学和技术,并不能因此就把另外一个机器学习“世界”归为人工智能。就像物理世界有其规律,当人类社会发现物理定律,了解物理世界,进而利用物理定律改变世界,我们并不能就因此就说物理世界是人工创作的。

随着时间的推移,人工智能和机器学习的区别就会越来越明显,二者又相互促进。机器学习的发展很大程度上来自数据科学和应用的驱动,直接的表现又好像是人工智能的发展和成就,人工智能和数据科学的发展也是机器学习变的更科学有效。

图片描述

“真空填补期”

机器学习和人工智能目前基本还是处于由于大数据和超高效运算环境带来的产业机会,实现以前由于数据匮乏和运算资源有限而不能实现的应用,基本属于快速的“真空填补期”。新产品新创意层出不穷。这就有点像饿极的狼(产业界)突然面前有成群结队的羔羊(数据)出现一样,几乎是逮到羔羊便是机遇。

“黎明前的黑暗”

同时从历史发展看,机器学习和人工智能又处于黎明前的黑暗期,虽然表面看上去华丽多彩,背后却是大量资源的消耗,“血拼”,暗示着这种研发的局限性和不可持续性。25年前面对BP普天下调参,15年前面对SVM普天下调参,基本都是10年一个波澜壮阔的“调参”周期,最近几年面对深度学习普天下又开始了新的“调参”周期。

新的机器学习技术依赖机器学习科学

每次”痛苦“经历的背后也许预示着新的技术呼之欲出,纵观过去60多年的历史,机器学习和人工智能本身就遵循一个螺旋式上升的发展过程,2-5年后可能新的一波机器学习技术要兴起,突出表现为:

  1. 机器学习从云端走向各类本地智能终端/传感器/设备,云端机器学习和本地机器自主学习有机融合;
  2. 机器学习算法本身不再依赖于GPU的支撑,但GPU等却可以实现众多智能系统在云端的同步协同;
  3. 基于神经形态,FPGA和光技术的芯片开始在普适学习/普适智能中显现魅力;
  4. 机器学习也许不需要特别“深度”,理论上讲5-8层神经网络具有普适学习能力;
  5. 无监督学习理论可能有突破性发展;
  6. 机器学习不必依赖于大数据,小样本学习技术的吸引力不可小觑。

到那时候机器学习和人工智能的春天也许才能真正到来,中国的机器学习和人工智能界朋友们是要“血拼”还是“智取”?

作者简介:

黄广斌,新加坡南洋理工大学终身教授,德国宝马集团和南洋理工大学未来汽车联合研究实验室人机交互、脑机交互以及汽车辅助驾驶项目和英国劳斯莱斯和南洋理工大学联合研究实验室导航决策辅助系统项目负责人。曾任过新加坡樟宜机场新加坡航空公司地面服务公司第五货运大厦的信息跟踪控制系统升级改造的总设计师和技术负责人。


CCAI 2016中国人工智能大会将于8月26-27日在京举行,AAAI主席,多位院士,MIT、微软、大疆、百度、滴滴专家领衔全球技术领袖和产业先锋打造国内人工智能前沿平台,6大主题报告,人机交互、机器学习、模式识别、产业实战相关4大专题论坛,1000+高质量参会嘉宾。门票限时六折优惠中

图片描述

这篇关于机器学习和人工智能处于“真空填补期”和“黎明前的黑暗”的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/705698

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个