本文主要是介绍密集匹配SGM python,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
记录一下
代码参考:https://github.com/bkj/sgm
论文: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4359315
理论部分参考:
https://www.cnblogs.com/wxxuan/p/13595014.html
https://zhuanlan.zhihu.com/p/49272032
https://zhuanlan.zhihu.com/p/159055657
"""
python implementation of the semi-global matching algorithm from Stereo Processing by Semi-Global Matching
and Mutual Information (https://core.ac.uk/download/pdf/11134866.pdf) by Heiko Hirschmuller.author: David-Alexandre Beaupre
date: 2019/07/12
"""import argparse
import sys
import time as timport cv2
import numpy as npclass Direction:def __init__(self, direction=(0, 0), name='invalid'):"""represent a cardinal direction in image coordinates (top left = (0, 0) and bottom right = (1, 1)).:param direction: (x, y) for cardinal direction.:param name: common name of said direction."""self.direction = directionself.name = name# 8 defined directions for sgm
N = Direction(direction=(0, -1), name='north')
NE = Direction(direction=(1, -1), name='north-east')
E = Direction(direction=(1, 0), name='east')
SE = Direction(direction=(1, 1), name='south-east')
S = Direction(direction=(0, 1), name='south')
SW = Direction(direction=(-1, 1), name='south-west')
W = Direction(direction=(-1, 0), name='west')
NW = Direction(direction=(-1, -1), name='north-west')class Paths:def __init__(self):"""represent the relation between the directions."""self.paths = [N, NE, E, SE, S, SW, W, NW]self.size = len(self.paths)self.effective_paths = [(E, W), (SE, NW), (S, N), (SW, NE)]class Parameters:def __init__(self, max_disparity=64, P1=5, P2=70, csize=(7, 7), bsize=(3, 3)):"""represent all parameters used in the sgm algorithm.:param max_disparity: maximum distance between the same pixel in both images.:param P1: penalty for disparity difference = 1:param P2: penalty for disparity difference > 1:param csize: size of the kernel for the census transform.:param bsize: size of the kernel for blurring the images and median filtering."""self.max_disparity = max_disparityself.P1 = P1self.P2 = P2self.csize = csizeself.bsize = bsizedef load_images(left_name, right_name, parameters):"""read and blur stereo image pair.:param left_name: name of the left image.:param right_name: name of the right image.:param parameters: structure containing parameters of the algorithm.:return: blurred left and right images."""left = cv2.imread(left_name, 0)left = cv2.GaussianBlur(left, parameters.bsize, 0, 0)right = cv2.imread(right_name, 0)right = cv2.GaussianBlur(right, parameters.bsize, 0, 0)return left, rightdef get_indices(offset, dim, direction, height):"""for the diagonal directions (SE, SW, NW, NE), return the array of indices for the current slice.:param offset: difference with the main diagonal of the cost volume.:param dim: number of elements along the path.:param direction: current aggregation direction.:param height: H of the cost volume.:return: arrays for the y (H dimension) and x (W dimension) indices."""y_indices = []x_indices = []for i in range(0, dim):if direction == SE.direction:if offset < 0:y_indices.append(-offset + i)x_indices.append(0 + i)else:y_indices.append(0 + i)x_indices.append(offset + i)if direction == SW.direction:if offset < 0:y_indices.append(height + offset - i)x_indices.append(0 + i)else:y_indices.append(height - i)x_indices.append(offset + i)return np.array(y_indices), np.array(x_indices)def get_path_cost(slice, offset, parameters):"""part of the aggregation step, finds the minimum costs in a D x M slice (where M = the number of pixels in thegiven direction):param slice: M x D array from the cost volume.:param offset: ignore the pixels on the border.:param parameters: structure containing parameters of the algorithm.:return: M x D array of the minimum costs for a given slice in a given direction."""other_dim = slice.shape[0]disparity_dim = slice.shape[1]disparities = [d for d in range(disparity_dim)] * disparity_dimdisparities = np.array(disparities).reshape(disparity_dim, disparity_dim)penalties = np.zeros(shape=(disparity_dim, disparity_dim), dtype=slice.dtype)penalties[np.abs(disparities - disparities.T) == 1] = parameters.P1penalties[np.abs(disparities - disparities.T) > 1] = parameters.P2minimum_cost_path = np.zeros(shape=(other_dim, disparity_dim), dtype=slice.dtype)minimum_cost_path[offset - 1, :] = slice[offset - 1, :]for i in range(offset, other_dim):previous_cost = minimum_cost_path[i - 1, :]current_cost = slice[i, :]costs = np.repeat(previous_cost, repeats=disparity_dim, axis=0).reshape(disparity_dim, disparity_dim)costs = np.amin(costs + penalties, axis=0)minimum_cost_path[i, :] = current_cost + costs - np.amin(previous_cost)return minimum_cost_pathdef aggregate_costs(cost_volume, parameters, paths):"""second step of the sgm algorithm, aggregates matching costs for N possible directions (8 in this case).:param cost_volume: array containing the matching costs.:param parameters: structure containing parameters of the algorithm.:param paths: structure containing all directions in which to aggregate costs.:return: H x W x D x N array of matching cost for all defined directions."""height = cost_volume.shape[0]width = cost_volume.shape[1]disparities = cost_volume.shape[2]start = -(height - 1)end = width - 1aggregation_volume = np.zeros(shape=(height, width, disparities, paths.size), dtype=cost_volume.dtype)path_id = 0for path in paths.effective_paths:print('\tProcessing paths {} and {}...'.format(path[0].name, path[1].name), end='')sys.stdout.flush()dawn = t.time()main_aggregation = np.zeros(shape=(height, width, disparities), dtype=cost_volume.dtype)opposite_aggregation = np.copy(main_aggregation)main = path[0]if main.direction == S.direction:for x in range(0, width):south = cost_volume[0:height, x, :]north = np.flip(south, axis=0)main_aggregation[:, x, :] = get_path_cost(south, 1, parameters)opposite_aggregation[:, x, :] = np.flip(get_path_cost(north, 1, parameters), axis=0)if main.direction == E.direction:for y in range(0, height):east = cost_volume[y, 0:width, :]west = np.flip(east, axis=0)main_aggregation[y, :, :] = get_path_cost(east, 1, parameters)opposite_aggregation[y, :, :] = np.flip(get_path_cost(west, 1, parameters), axis=0)if main.direction == SE.direction:for offset in range(start, end):south_east = cost_volume.diagonal(offset=offset).Tnorth_west = np.flip(south_east, axis=0)dim = south_east.shape[0]y_se_idx, x_se_idx = get_indices(offset, dim, SE.direction, None)y_nw_idx = np.flip(y_se_idx, axis=0)x_nw_idx = np.flip(x_se_idx, axis=0)main_aggregation[y_se_idx, x_se_idx, :] = get_path_cost(south_east, 1, parameters)opposite_aggregation[y_nw_idx, x_nw_idx, :] = get_path_cost(north_west, 1, parameters)if main.direction == SW.direction:for offset in range(start, end):south_west = np.flipud(cost_volume).diagonal(offset=offset).Tnorth_east = np.flip(south_west, axis=0)dim = south_west.shape[0]y_sw_idx, x_sw_idx = get_indices(offset, dim, SW.direction, height - 1)y_ne_idx = np.flip(y_sw_idx, axis=0)x_ne_idx = np.flip(x_sw_idx, axis=0)main_aggregation[y_sw_idx, x_sw_idx, :] = get_path_cost(south_west, 1, parameters)opposite_aggregation[y_ne_idx, x_ne_idx, :] = get_path_cost(north_east, 1, parameters)aggregation_volume[:, :, :, path_id] = main_aggregationaggregation_volume[:, :, :, path_id + 1] = opposite_aggregationpath_id = path_id + 2dusk = t.time()print('\t(done in {:.2f}s)'.format(dusk - dawn))return aggregation_volumedef compute_costs(left, right, parameters, save_images):"""first step of the sgm algorithm, matching cost based on census transform and hamming distance.:param left: left image.:param right: right image.:param parameters: structure containing parameters of the algorithm.:param save_images: whether to save census images or not.:return: H x W x D array with the matching costs."""assert left.shape[0] == right.shape[0] and left.shape[1] == right.shape[1], 'left & right must have the same shape.'assert parameters.max_disparity > 0, 'maximum disparity must be greater than 0.'height = left.shape[0]width = left.shape[1]cheight = parameters.csize[0]cwidth = parameters.csize[1]y_offset = int(cheight / 2)x_offset = int(cwidth / 2)disparity = parameters.max_disparityleft_img_census = np.zeros(shape=(height, width), dtype=np.uint8)right_img_census = np.zeros(shape=(height, width), dtype=np.uint8)left_census_values = np.zeros(shape=(height, width), dtype=np.uint64)right_census_values = np.zeros(shape=(height, width), dtype=np.uint64)print('\tComputing left and right census...', end='')sys.stdout.flush()dawn = t.time()# pixels on the border will have no census valuesfor y in range(y_offset, height - y_offset):for x in range(x_offset, width - x_offset):left_census = np.int64(0)center_pixel = left[y, x]reference = np.full(shape=(cheight, cwidth), fill_value=center_pixel, dtype=np.int64)image = left[(y - y_offset):(y + y_offset + 1), (x - x_offset):(x + x_offset + 1)]comparison = image - referencefor j in range(comparison.shape[0]):for i in range(comparison.shape[1]):if (i, j) != (y_offset, x_offset):left_census = left_census << 1if comparison[j, i] < 0:bit = 1else:bit = 0left_census = left_census | bitleft_img_census[y, x] = np.uint8(left_census)left_census_values[y, x] = left_censusright_census = np.int64(0)center_pixel = right[y, x]reference = np.full(shape=(cheight, cwidth), fill_value=center_pixel, dtype=np.int64)image = right[(y - y_offset):(y + y_offset + 1), (x - x_offset):(x + x_offset + 1)]comparison = image - referencefor j in range(comparison.shape[0]):for i in range(comparison.shape[1]):if (i, j) != (y_offset, x_offset):right_census = right_census << 1if comparison[j, i] < 0:bit = 1else:bit = 0right_census = right_census | bitright_img_census[y, x] = np.uint8(right_census)right_census_values[y, x] = right_censusdusk = t.time()print('\t(done in {:.2f}s)'.format(dusk - dawn))if save_images:cv2.imwrite('left_census.png', left_img_census)cv2.imwrite('right_census.png', right_img_census)print('\tComputing cost volumes...', end='')sys.stdout.flush()dawn = t.time()left_cost_volume = np.zeros(shape=(height, width, disparity), dtype=np.uint32)right_cost_volume = np.zeros(shape=(height, width, disparity), dtype=np.uint32)lcensus = np.zeros(shape=(height, width), dtype=np.int64)rcensus = np.zeros(shape=(height, width), dtype=np.int64)for d in range(0, disparity):rcensus[:, (x_offset + d):(width - x_offset)] = right_census_values[:, x_offset:(width - d - x_offset)]left_xor = np.int64(np.bitwise_xor(np.int64(left_census_values), rcensus))left_distance = np.zeros(shape=(height, width), dtype=np.uint32)while not np.all(left_xor == 0):tmp = left_xor - 1mask = left_xor != 0left_xor[mask] = np.bitwise_and(left_xor[mask], tmp[mask])left_distance[mask] = left_distance[mask] + 1left_cost_volume[:, :, d] = left_distancelcensus[:, x_offset:(width - d - x_offset)] = left_census_values[:, (x_offset + d):(width - x_offset)]right_xor = np.int64(np.bitwise_xor(np.int64(right_census_values), lcensus))right_distance = np.zeros(shape=(height, width), dtype=np.uint32)while not np.all(right_xor == 0):tmp = right_xor - 1mask = right_xor != 0right_xor[mask] = np.bitwise_and(right_xor[mask], tmp[mask])right_distance[mask] = right_distance[mask] + 1right_cost_volume[:, :, d] = right_distancedusk = t.time()print('\t(done in {:.2f}s)'.format(dusk - dawn))return left_cost_volume, right_cost_volumedef select_disparity(aggregation_volume):"""last step of the sgm algorithm, corresponding to equation 14 followed by winner-takes-all approach.:param aggregation_volume: H x W x D x N array of matching cost for all defined directions.:return: disparity image."""volume = np.sum(aggregation_volume, axis=3)disparity_map = np.argmin(volume, axis=2)return disparity_mapdef normalize(volume, parameters):"""transforms values from the range (0, 64) to (0, 255).:param volume: n dimension array to normalize.:param parameters: structure containing parameters of the algorithm.:return: normalized array."""return 255.0 * volume / parameters.max_disparitydef get_recall(disparity, gt, args):"""computes the recall of the disparity map.:param disparity: disparity image.:param gt: path to ground-truth image.:param args: program arguments.:return: rate of correct predictions."""gt = np.float32(cv2.imread(gt, cv2.IMREAD_GRAYSCALE))gt = np.int16(gt / 255.0 * float(args.disp))disparity = np.int16(np.float32(disparity) / 255.0 * float(args.disp))correct = np.count_nonzero(np.abs(disparity - gt) <= 3)return float(correct) / gt.sizedef sgm():"""main function applying the semi-global matching algorithm.:return: void."""parser = argparse.ArgumentParser()parser.add_argument('--left', default='cones/im2.png', help='name (path) to the left image')parser.add_argument('--right', default='cones/im6.png', help='name (path) to the right image')parser.add_argument('--left_gt', default='cones/disp2.png', help='name (path) to the left ground-truth image')parser.add_argument('--right_gt', default='cones/disp6.png', help='name (path) to the right ground-truth image')parser.add_argument('--output', default='disparity_map.png', help='name of the output image')parser.add_argument('--disp', default=64, type=int, help='maximum disparity for the stereo pair')parser.add_argument('--images', default=False, type=bool, help='save intermediate representations')parser.add_argument('--eval', default=True, type=bool, help='evaluate disparity map with 3 pixel error')args = parser.parse_args()left_name = args.leftright_name = args.rightleft_gt_name = args.left_gtright_gt_name = args.right_gtoutput_name = args.outputdisparity = args.dispsave_images = args.imagesevaluation = args.evaldawn = t.time()parameters = Parameters(max_disparity=disparity, P1=10, P2=120, csize=(7, 7), bsize=(3, 3))paths = Paths()print('\nLoading images...')left, right = load_images(left_name, right_name, parameters)print('\nStarting cost computation...')left_cost_volume, right_cost_volume = compute_costs(left, right, parameters, save_images)if save_images:left_disparity_map = np.uint8(normalize(np.argmin(left_cost_volume, axis=2), parameters))cv2.imwrite('disp_map_left_cost_volume.png', left_disparity_map)right_disparity_map = np.uint8(normalize(np.argmin(right_cost_volume, axis=2), parameters))cv2.imwrite('disp_map_right_cost_volume.png', right_disparity_map)print('\nStarting left aggregation computation...')left_aggregation_volume = aggregate_costs(left_cost_volume, parameters, paths)print('\nStarting right aggregation computation...')right_aggregation_volume = aggregate_costs(right_cost_volume, parameters, paths)print('\nSelecting best disparities...')left_disparity_map = np.uint8(normalize(select_disparity(left_aggregation_volume), parameters))right_disparity_map = np.uint8(normalize(select_disparity(right_aggregation_volume), parameters))if save_images:cv2.imwrite('left_disp_map_no_post_processing.png', left_disparity_map)cv2.imwrite('right_disp_map_no_post_processing.png', right_disparity_map)print('\nApplying median filter...')left_disparity_map = cv2.medianBlur(left_disparity_map, parameters.bsize[0])right_disparity_map = cv2.medianBlur(right_disparity_map, parameters.bsize[0])cv2.imwrite(f'left_{output_name}', left_disparity_map)cv2.imwrite(f'right_{output_name}', right_disparity_map)if evaluation:print('\nEvaluating left disparity map...')recall = get_recall(left_disparity_map, left_gt_name, args)print('\tRecall = {:.2f}%'.format(recall * 100.0))print('\nEvaluating right disparity map...')recall = get_recall(right_disparity_map, right_gt_name, args)print('\tRecall = {:.2f}%'.format(recall * 100.0))dusk = t.time()print('\nFin.')print('\nTotal execution time = {:.2f}s'.format(dusk - dawn))if __name__ == '__main__':sgm()
这篇关于密集匹配SGM python的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!