C语言中位域(bit fields)的可移植问题

2024-02-13 07:32

本文主要是介绍C语言中位域(bit fields)的可移植问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

网上有文章说C语言的“位域”(bit fields)有可移植性的问题,原因是不同的编译器对位域的实现不同。

  我决定用实验验证一下。

  一、 实验过程:

  1. 准备实验程序

  这 是谭浩强C语言课本上第12章12.2节的位域示例程序:


  main() {
  struct bs
  {
  unsigned a:1;
  unsigned b:3;
  unsigned c:4;
  } bit,*pbit;
  bit.a = 1;
  bit.b = 7;
  bit.c = 15;
  printf("%d,%d,%d\n", bit.a, bit.b, bit.c);
  pbit = &bit;
  pbit->a = 0;
  pbit->b &= 3;
  pbit->c |= 1;
  printf("%d,%d,%d\n", pbit->a, pbit->b, pbit->c);
  }

  我将它改写成:


  #include
  int main(int argc, char** argv)
  {
  struct bitfields
  {
  unsigned long a:1;
  unsigned long b:3;
  unsigned long c:4;
  unsigned long d:8;
  unsigned long e:16;
  unsigned long f:32;
  };
  union
  {
  struct bitfields bit;
  unsigned long longhex;
  unsigned long long longlonghex;
  } union_bit;
  union_bit.bit.a = 1;
  union_bit.bit.b = 7;
  union_bit.bit.c = 8;
  union_bit.bit.d = 0x70;
  union_bit.bit.e = 0x5060;
  union_bit.bit.f = 0x10203040;
  printf("a=%d b=%d c=%d d=0x%x\ne=0x%x f=0x%lx\n", union_bit.bit.a,
  union_bit.bit.b, union_bit.bit.c, union_bit.bit.d, union_bit.bit.e, union_bit.bit.f);
  printf("*(unsigned long*)(&bit) = %lx\n", union_bit.longhex);
  printf("*(unsigned long long*)(&bit) = %llx\n", union_bit.longlonghex);
  union_bit.bit.a = 0;
  union_bit.bit.b = 3;
  union_bit.bit.c = 9;
  printf("a=%d b=%d c=%d d=0x%x\ne=0x%x f=0x%lx\n", union_bit.bit.a,
  union_bit.bit.b, union_bit.bit.c, union_bit.bit.d, union_bit.bit.e, union_bit.bit.f);
  printf("*(unsigned long*)(&bit) = %lx\n", union_bit.longhex);
  printf("*(unsigned long long*)(&bit) = %llx\n", union_bit.longlonghex);
  printf("sizeof unsigned long = %d\n", sizeof(unsigned long));
  printf("sizeof struct bitfields = %d\n", sizeof(struct bitfields));
  return 0;
  }

  2. 在不同的软硬件环境中运行实验程序,得到结果

  1) 运行环境一:

  硬件:1颗双核单线程的Pentium E5300, 主频2.60 GHz, 3 GB内存

  软件:Fedora 12(内核2.6.31.5), gcc 4.4.2, glibc 2.11, 32位OS ,32位C编译器

  运行结果:


  a=1 b=7 c=8 d=0x70
  e=0x5060 f=0x10203040
  *(unsigned long*)(&bit) = 5060708f
  *(unsigned long long*)(&bit) = 102030405060708f
  a=0 b=3 c=9 d=0x70
  e=0x5060 f=0x10203040
  *(unsigned long*)(&bit) = 50607096
  *(unsigned long long*)(&bit) = 1020304050607096
  sizeof unsigned long = 4
  sizeof struct bitfields = 8

  2) 运行环境二:

  硬件:1颗UltraSPARC T1, 主频1.0 GHz, 8核心×每核4线程, 64位32线程CPU, 8 GB内存

  软件:Solaris 10 Update 3 for SPARC, 64位OS, 32位C编译器

  运行结果:

 


 a=1 b=7 c=8 d=0x70
  e=0x5060 f=0x10203040
  *(unsigned long*)(&bit) = f8705060
  *(unsigned long long*)(&bit) = f870506010203040
  a=0 b=3 c=9 d=0x70
  e=0x5060 f=0x10203040
  *(unsigned long*)(&bit) = 39705060
  *(unsigned long long*)(&bit) = 3970506010203040
  sizeof unsigned long = 4
  sizeof struct bitfields = 8

3) 运行环境三:

  硬件:1 颗双核单线程的Intel Xeon 3050芯片, CPU 主频为2.13 GHz, 配置8 GB内存

  软件:FreeBSD 6.2, 64位OS, 64位C编译器

  运行结果:


  a=1 b=7 c=8 d=0x70
  e=0x5060 f=0x7fff10203040
  *(unsigned long*)(&bit) = 102030405060708f
  *(unsigned long long*)(&bit) = 102030405060708f
  a=0 b=3 c=9 d=0x70
  e=0x5060 f=0x7fff10203040
  *(unsigned long*)(&bit) = 1020304050607096
  *(unsigned long long*)(&bit) = 1020304050607096
  sizeof unsigned long = 8
  sizeof struct bitfields = 8

  二、 实验结果分析:

  在32位x86系统上,位域对应的二进制位为:

  ffffffff ffffffff ffffffff ffffffff eeeeeeee eeeeeeee dddddddd ccccbbba

  因为long类型是32位,所以把整个bitfields作为unsigned long输出时,输出了整个bitfields的一部分:

  eeeeeeee eeeeeeee dddddddd ccccbbba

  在64位SPARC系统上,位域对应的二进制位为:

  abbbcccc dddddddd eeeeeeee eeeeeeee ffffffff ffffffff ffffffff ffffffff

  因为long类型是32位,所以把整个bitfields作为unsigned long输出时,也输出了整个bitfields的一部分:

  abbbcccc dddddddd eeeeeeee eeeeeeee

  在64位x86系统上,位域对应的二进制位为:

  ffffffff ffffffff ffffffff ffffffff eeeeeeee eeeeeeee dddddddd ccccbbba

  因为long类型是64位,在printf的时候"f=0x%lx"读取到了bitfields以外的内存,所以导致f=0x7fff10203040这样的结果。

  并且,把整个bitfields作为unsigned long输出时,输出了整个bitfields的全部内容。

  三、 实验结论:

  1. 机器的字长和字节序,会直接影响到“位域”的值。

  2. long类型,在64位编译器中是64位的数据类型;而在32位编译器中是32位数据类型。

  3. long long 数据类型,在32位编译器和64位编译器中,都是64位类型。

  注:关于字节序的说明:

  大端字节(big endian)是指低地址存放最高有效位(MSB: Most Significant Bit);

  小端字节(little endian)是低地址存放最低有效位(LSB: Least Significant Bit)。

  用文字说明可能比较抽象,下面用图像加以说明。

  比如数字0x0A0B0C0D在两种不同字节序CPU中的存储顺序如下所示:

  Big Endian

  低地址 ------> 高地址

  +----+----+----+----+

  | 0A | 0B | 0C | 0D |

  +----+----+----+----+

  Little Endian

  低地址 ------> 高地址

  +----+----+----+----+

  | 0D | 0C | 0B | 0A |

  +----+----+----+----+

  Intel 80x86, MOS Technology 6502, Z80, VAX, PDP-11 处理器为 Little endian。

  Motorola 6800, Motorola 68000, PowerPC 970, System/370, SPARC(除V9外) 处理器为 Big endian。

  ARM, PowerPC (除PowerPC 970外), DEC Alpha, SPARC V9, MIPS, PA-RISC, Intel IA64 的字节序是可配置的。

  为什么要注意字节序的问题呢?你可能这么问。当然,如果你写的程序只在单机环境下面运行,并且不和别人的程序打交道,那么你完全可以忽略字节序的存在。但是,如果你的程序要跟别人的程序产生交互呢?在这里我想说说两种语言。C/C++语言编写的程序里数据存储顺序是跟编译平台所在的CPU相关的,而JAVA编写的程序则唯一采用big endian方式来存储数据。试想,如果你用C/C++语言在x86平台下编写的程序跟别人的JAVA程序互通时会产生什么结果?就拿上面的0x12345678来说,你的程序传递给别人的一个数据,将指向0x12345678的指针传给了JAVA程序,由于JAVA采取big endian方式存储数据,很自然的它会将你的数据翻译为0x78563412。什么?竟然变成另外一个数字了?是的,就是这种后果。因此,在你的C程序传给JAVA程序之前有必要进行字节序的转换工作。

  无独有偶,所有网络协议也都是采用big endian的方式来传输数据的。所以有时我们也会把big endian方式称之为网络字节序。当两台采用不同字节序的主机通信时,在发送数据之前都必须经过字节序的转换成为网络字节序后再进行传输。

这篇关于C语言中位域(bit fields)的可移植问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/704893

相关文章

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

C语言中的数据类型强制转换

《C语言中的数据类型强制转换》:本文主要介绍C语言中的数据类型强制转换方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C语言数据类型强制转换自动转换强制转换类型总结C语言数据类型强制转换强制类型转换:是通过类型转换运算来实现的,主要的数据类型转换分为自动转换

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

C语言实现两个变量值交换的三种方式

《C语言实现两个变量值交换的三种方式》两个变量值的交换是编程中最常见的问题之一,以下将介绍三种变量的交换方式,其中第一种方式是最常用也是最实用的,后两种方式一般只在特殊限制下使用,需要的朋友可以参考下... 目录1.使用临时变量(推荐)2.相加和相减的方式(值较大时可能丢失数据)3.按位异或运算1.使用临时

使用C语言实现交换整数的奇数位和偶数位

《使用C语言实现交换整数的奇数位和偶数位》在C语言中,要交换一个整数的二进制位中的奇数位和偶数位,重点需要理解位操作,当我们谈论二进制位的奇数位和偶数位时,我们是指从右到左数的位置,本文给大家介绍了使... 目录一、问题描述二、解决思路三、函数实现四、宏实现五、总结一、问题描述使用C语言代码实现:将一个整

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码