本文主要是介绍集成学习----“三个臭皮匠,赛过诸葛亮”,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
集成学习(Ensemble Learning)通过使用一些方法改变原始训练样本的分布,来构建多个不同的学习器,再结合这多个学习器来完成学习任务,常可获得比单一学习器显著优越的泛化性能。该过程中多个不同的分类器,叫做个体学习器或者基学习器。个体分类器之间要具备一定的差异性和准确性,即尽可能“好而不同”,个体分类器的准确度要大于0.5。集成学习的研究核心有二个内容:一者是如何构建具备一定差异性和准确率的基学习器,二者为如何整合多个不同的学习器,提升学习性能。
根据个体学习器的生成方式,当前集成学习方法大致可分为二类:1.个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以Boosting为代表;2.个体学习器之间不存在依赖关系,可以同时生成的并行方法,以Bagging、随机森林(Random Forest)为代表。
在正式介绍上述二类方法之前,先回顾二方面内容:
1.偏差-方差
如图所示,蓝色点为样本的训练期望值,红色区域为样本的真实值。偏差(Bias)指的是样本期望值与真实值之间的误差,方差指的是随机变量在其期望值附近的波动程度。
2.Bootstrap采样法
Bootstrap是一种自助采样法,“有放回抽样”的经典样本估计算法。其假设观察样本即为数据总样本,再由假定总体抽取子样本,即再抽样。后续的Bagging、Boosting、随机森林等算法的样本抽样算法用的都是Bootstrap。
Boosting
Boosting是一种可把弱学习器提升为强学习器的算法。先从初始训练集训练出一个基学习器,再根据基学习器的表现改变原始训练样本的分布进行调整,使得先前学习器做错的训练样本在后续得到更高的关注,再进一步学习新的学习器。典型的算法是AdaBoost:对训练样本初始化相同的权重,训练一个基学习器,根据该学习器的表现,给予判断错误的样本更高的权重,改变训练样本的权重分布,在训练新的学习器;迭代进行上述步骤。
从偏差-方差的角度来看,Boosting主要关注降低偏差。每一次迭代都是在上一轮的基础上拟合训练样本,因此偏差逐渐降低。那么对于基分类器来说,目标是降低方差,故而常选择更简单的深度很浅的决策树;若基学习器过于复杂,则方差较大,容易产生过拟合,因此,Boosting的基本模型必须是“弱模型”,具备“高偏差低方差”的特点。
Bagging
给定包含m个样本的数据集,随机取出一个样本放入采样集中,再放回数据集。经过m次随机采样操作,得到包含m个样本的采样集。初始采样集中,可能存在样本多次出现。采样出T个包含m个训练样本的采样集,分别训练基学习器,再将T个基学习器进行整合,这就是Bagging算法。T个基学习器间相互独立,可以并行生成,性能较为平均,方差小,因此基分类器的目标是降低偏差,常采用较深而且不剪枝的决策树、神经网络。从偏差-方差的角度来看,Bagging主要关注降低方差。与Boosting相比,Boosting的拟合效果更好(偏差更小);Bagging的方差更小,更不易发生过拟合。Bagging的基本模型必须是“强模型”,具备“高方差低偏差”的特点。
随机森林
随机森林是在Bagging的基础上改进的,不仅是用了数据样本扰动,还使用了属性扰动的多样性增强机制,大大减少了产生过拟合的可能性,因此不需要剪枝。传统决策树在划分属性时,在当前节点的属性集合中选择一个最优属性;而在RF中,先从当前节点的属性集合中随机选择k个属性,再计算一个最优属性用于划分。
基分类器整合策略
1.投票法:多用于分类任务
2.平均法:多用于回归任务
3.学习法:如Stacking算法:使用交叉验证法,将原始训练样本划分为不相交的k个子集;每个子集按照7:3的比例分为训练集和测试集,利用训练集生成初级学习器;使用测试集对初级学习器进行测试,得到的预测结果作为次级学习器的输入,将正确输出作为输出,训练一个更高层的学习器。
这篇关于集成学习----“三个臭皮匠,赛过诸葛亮”的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!