集成学习----“三个臭皮匠,赛过诸葛亮”

2024-02-12 02:30

本文主要是介绍集成学习----“三个臭皮匠,赛过诸葛亮”,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

集成学习(Ensemble Learning)通过使用一些方法改变原始训练样本的分布,来构建多个不同的学习器,再结合这多个学习器来完成学习任务,常可获得比单一学习器显著优越的泛化性能。该过程中多个不同的分类器,叫做个体学习器或者基学习器。个体分类器之间要具备一定的差异性和准确性,即尽可能“好而不同”,个体分类器的准确度要大于0.5。集成学习的研究核心有二个内容:一者是如何构建具备一定差异性和准确率的基学习器,二者为如何整合多个不同的学习器,提升学习性能。

根据个体学习器的生成方式,当前集成学习方法大致可分为二类:1.个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以Boosting为代表;2.个体学习器之间不存在依赖关系,可以同时生成的并行方法,以Bagging、随机森林(Random Forest)为代表。

在正式介绍上述二类方法之前,先回顾二方面内容:

1.偏差-方差

如图所示,蓝色点为样本的训练期望值,红色区域为样本的真实值。偏差(Bias)指的是样本期望值与真实值之间的误差,方差指的是随机变量在其期望值附近的波动程度。

2.Bootstrap采样法

  Bootstrap是一种自助采样法,“有放回抽样”的经典样本估计算法。其假设观察样本即为数据总样本,再由假定总体抽取子样本,即再抽样。后续的Bagging、Boosting、随机森林等算法的样本抽样算法用的都是Bootstrap。

Boosting

Boosting是一种可把弱学习器提升为强学习器的算法。先从初始训练集训练出一个基学习器,再根据基学习器的表现改变原始训练样本的分布进行调整,使得先前学习器做错的训练样本在后续得到更高的关注,再进一步学习新的学习器。典型的算法是AdaBoost:对训练样本初始化相同的权重,训练一个基学习器,根据该学习器的表现,给予判断错误的样本更高的权重,改变训练样本的权重分布,在训练新的学习器;迭代进行上述步骤。

从偏差-方差的角度来看,Boosting主要关注降低偏差。每一次迭代都是在上一轮的基础上拟合训练样本,因此偏差逐渐降低。那么对于基分类器来说,目标是降低方差,故而常选择更简单的深度很浅的决策树;若基学习器过于复杂,则方差较大,容易产生过拟合,因此,Boosting的基本模型必须是“弱模型”,具备“高偏差低方差”的特点。

Bagging

给定包含m个样本的数据集,随机取出一个样本放入采样集中,再放回数据集。经过m次随机采样操作,得到包含m个样本的采样集。初始采样集中,可能存在样本多次出现。采样出T个包含m个训练样本的采样集,分别训练基学习器,再将T个基学习器进行整合,这就是Bagging算法。T个基学习器间相互独立,可以并行生成,性能较为平均,方差小,因此基分类器的目标是降低偏差,常采用较深而且不剪枝的决策树、神经网络。从偏差-方差的角度来看,Bagging主要关注降低方差。与Boosting相比,Boosting的拟合效果更好(偏差更小);Bagging的方差更小,更不易发生过拟合。Bagging的基本模型必须是“强模型”,具备“高方差低偏差”的特点。

随机森林

随机森林是在Bagging的基础上改进的,不仅是用了数据样本扰动,还使用了属性扰动的多样性增强机制,大大减少了产生过拟合的可能性,因此不需要剪枝。传统决策树在划分属性时,在当前节点的属性集合中选择一个最优属性;而在RF中,先从当前节点的属性集合中随机选择k个属性,再计算一个最优属性用于划分。

基分类器整合策略

1.投票法:多用于分类任务

2.平均法:多用于回归任务

3.学习法:如Stacking算法:使用交叉验证法,将原始训练样本划分为不相交的k个子集;每个子集按照7:3的比例分为训练集和测试集,利用训练集生成初级学习器;使用测试集对初级学习器进行测试,得到的预测结果作为次级学习器的输入,将正确输出作为输出,训练一个更高层的学习器。

这篇关于集成学习----“三个臭皮匠,赛过诸葛亮”的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701439

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

springboot2.1.3 hystrix集成及hystrix-dashboard监控详解

《springboot2.1.3hystrix集成及hystrix-dashboard监控详解》Hystrix是Netflix开源的微服务容错工具,通过线程池隔离和熔断机制防止服务崩溃,支持降级、监... 目录Hystrix是Netflix开源技术www.chinasem.cn栈中的又一员猛将Hystrix熔

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

SpringBoot集成P6Spy的实现示例

《SpringBoot集成P6Spy的实现示例》本文主要介绍了SpringBoot集成P6Spy的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录本节目标P6Spy简介抛出问题集成P6Spy1. SpringBoot三板斧之加入依赖2. 修改

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

springboot项目中集成shiro+jwt完整实例代码

《springboot项目中集成shiro+jwt完整实例代码》本文详细介绍如何在项目中集成Shiro和JWT,实现用户登录校验、token携带及接口权限管理,涉及自定义Realm、ModularRe... 目录简介目的需要的jar集成过程1.配置shiro2.创建自定义Realm2.1 LoginReal

SpringBoot集成Shiro+JWT(Hutool)完整代码示例

《SpringBoot集成Shiro+JWT(Hutool)完整代码示例》ApacheShiro是一个强大且易用的Java安全框架,提供了认证、授权、加密和会话管理功能,在现代应用开发中,Shiro因... 目录一、背景介绍1.1 为什么使用Shiro?1.2 为什么需要双Token?二、技术栈组成三、环境