Educational Codeforces Round 145 (Rated for Div. 2)C. Sum on Subarrays(构造)

2024-02-09 18:52

本文主要是介绍Educational Codeforces Round 145 (Rated for Div. 2)C. Sum on Subarrays(构造),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

很意思的一道构造题
image

题意:给一个 n 、 k n、k nk,让构造长度为n的数组满足,子数组为整数的个数为k个,负数的为 k − ( n + 1 ) ∗ n / 2 k-(n+1)* n/2 k(n+1)n/2,每个数的范围为 [ − 1000 , 1000 ] [-1000,1000] [1000,1000]

这种构造题可以考虑就是前一段可以一直用一样的、最小的。
我们观察可以发现 k + k − ( n + 1 ) ∗ n / 2 = ( n + 1 ) ∗ n / 2 k+k-(n+1)* n/2= (n+1)* n/2 k+k(n+1)n/2=(n+1)n/2
也就是所有子数组的个数,换句话说子数组不能有0。
这样我们很容易考虑用很小的一个负数和一个很小的正数去构造
这里我用的是 1 1 1 − 1000 -1000 1000
我们先考考虑一下前一段是p个1,后面全是-1000的情况这样我们得到的正数组有 ( p + 1 ) ∗ p 2 个 \frac{(p+1) * p}{2}个 2(p+1)p
k = ( p + 1 ) ∗ p 2 k=\frac{(p+1) * p}{2} k=2(p+1)p时,自然皆大欢喜
k > = ( p + 1 ) ∗ p 2 k>=\frac{(p+1) * p}{2} k>=2(p+1)p时,我们考虑一下剩下的 k − ( p + 1 ) ∗ p 2 k-\frac{(p+1) * p}{2} k2(p+1)p该如何臭凑出来,能增加p吗?,当p+1,我们会增加p+1个正数组,这是不行的,我们考虑的p的最大满足 k > = ( p + 1 ) ∗ p 2 k>=\frac{(p+1) * p}{2} k>=2(p+1)p的p,也就是说缺少的正数组个数是在 [ 1 , p ] [1,p] [1,p]
我们可以选择前面p个1中的一个将其变为1000, p + 1 p+1 p+1处的-1000遍为500,这样我们就可以添加 [ 1 , p ] [1,p] [1,p]个正数组,哪个位置的1变为1000呢?
我们可以找一下规律
image
弄清楚上面的事情,代码就很简单了,我们只需要而分出最后一个满足条件的p然后按照上面的构造方法放数即可

#include <bits/stdc++.h> 
#define int long long
#define rep(i,a,b) for(int i = (a); i <= (b); ++i)
#define fep(i,a,b) for(int i = (a); i >= (b); --i)
#define pii pair<int, int>
#define pll pair<long long, long long>
#define ll long long
#define db double
#define endl '\n'
#define x first
#define y second
#define pb push_backusing namespace std;const int N=5e3+10,mod=100003,inf=(1ull<<63)-1;
int n,m,k;
int vis[N],d[N];
int a[1010],b[1010];void solve()
{cin>>n>>k;int l=0,r=n;while(l<r){int mid=(l+r+1)>>1;if(mid*(mid+1)/2<=k)	l=mid;else	r=mid-1;}if(l*(l+1)/2==k){rep(i,1,l)	cout<<1<<' ';rep(i,l+1,n){if(i==l+1)	cout<<-500<<' ';else cout<<-1000<<' ';}cout<<endl;	}else{int d=k-(l*(l+1))/2;rep(i,1,l){if(i==d)	cout<<1000<<' ';else	cout<<1<<' ';}rep(i,l+1,n){if(i==l+1)	cout<<-500<<' ';else cout<<-1000<<' ';}	cout<<endl;	}
}signed main(){ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
//   	freopen("1.in", "r", stdin);int _;cin>>_;while(_--)solve();return 0;
}

这篇关于Educational Codeforces Round 145 (Rated for Div. 2)C. Sum on Subarrays(构造)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/695025

相关文章

最大流=最小割=最小点权覆盖集=sum-最大点权独立集

二分图最小点覆盖和最大独立集都可以转化为最大匹配求解。 在这个基础上,把每个点赋予一个非负的权值,这两个问题就转化为:二分图最小点权覆盖和二分图最大点权独立集。   二分图最小点权覆盖     从x或者y集合中选取一些点,使这些点覆盖所有的边,并且选出来的点的权值尽可能小。 建模:     原二分图中的边(u,v)替换为容量为INF的有向边(u,v),设立源点s和汇点t

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

Codeforces Round #261 (Div. 2)小记

A  XX注意最后输出满足条件,我也不知道为什么写的这么长。 #define X first#define Y secondvector<pair<int , int> > a ;int can(pair<int , int> c){return -1000 <= c.X && c.X <= 1000&& -1000 <= c.Y && c.Y <= 1000 ;}int m

Codeforces Beta Round #47 C凸包 (最终写法)

题意慢慢看。 typedef long long LL ;int cmp(double x){if(fabs(x) < 1e-8) return 0 ;return x > 0 ? 1 : -1 ;}struct point{double x , y ;point(){}point(double _x , double _y):x(_x) , y(_y){}point op

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int

Codeforces 482B 线段树

求是否存在这样的n个数; m次操作,每次操作就是三个数 l ,r,val          a[l] & a[l+1] &......&a[r] = val 就是区间l---r上的与的值为val 。 也就是意味着区间[L , R] 每个数要执行 | val 操作  最后判断  a[l] & a[l+1] &......&a[r] 是否= val import ja

leetcode105 从前序与中序遍历序列构造二叉树

根据一棵树的前序遍历与中序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。 例如,给出 前序遍历 preorder = [3,9,20,15,7]中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树: 3/ \9 20/ \15 7   class Solution {public TreeNode buildTree(int[] pr

CSS实现DIV三角形

本文内容收集来自网络 #triangle-up {width: 0;height: 0;border-left: 50px solid transparent;border-right: 50px solid transparent;border-bottom: 100px solid red;} #triangle-down {width: 0;height: 0;bor

如何导入sun.misc.BASE64Encoder和sum.misc.BASE64Decoder

右击项目名--->Build Path--->Configure Build Path...--->java Build Path--->Access rules:1 rule defined,added to all librar...   --->Edit --->Add...

C++中类的构造函数调用顺序

当建立一个对象时,首先调用基类的构造函数,然后调用下一个派生类的 构造函数,依次类推,直至到达派生类次数最多的派生次数最多的类的构造函数为止。 简而言之,对象是由“底层向上”开始构造的。因为,构造函数一开始构造时,总是 要调用它的基类的构造函数,然后才开始执行其构造函数体,调用直接基类构造函数时, 如果无专门说明,就调用直接基类的默认构造函数。在对象析构时,其顺序正好相反。