Modern C++ 内存篇1 - std::allocator VS pmr

2024-02-09 09:52

本文主要是介绍Modern C++ 内存篇1 - std::allocator VS pmr,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大年三十所写,看到就点个赞吧!祝读者们龙年大吉!当然有问题欢迎评论指正。
在这里插入图片描述

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1. 前言

从今天起我们开始内存相关的话题,内存是个很大的话题,一时不知从何说起。内存离不开allocator,我们就从allocator开始吧。allocator目前有两种:std::allocator, std::pmr::polymorphic_allocator,各有优缺点。
上来就长篇大论容易显得枯燥,我们还是抛出一个例子然后提出问题,通过问题慢慢深入吧。

2. 分配器例子

下面这个例子是我很久以前从一个网站上copy下来的。是个不错的用来快速学习的例子。作者当时留了个疑问没解决:为什么预分配内存的pmr反而效率更低哪?
这也是本节我们要解决的问题,从中也可以学到allocator和polymorphic_allocator的优缺点对比。

#include<iostream>
#include<memory_resource>
#include<vector>
#include "../PerfSum.hpp"
using namespace std;void TestPmrVec(){char buffer[1000000*4] = {0};std::pmr::monotonic_buffer_resource mbr{ std::data(buffer), std::size(buffer) };std::pmr::polymorphic_allocator<int> pa{&mbr};std::pmr::vector<int> vec{pa};//vec.push_back(0);//vec.push_back(1);PerfSum t;for(int i=0;i<1000000;i++){vec.push_back(i);}std::cout<<"End"<<std::endl;}void TestStdVec(){std::vector<int> vec ;PerfSum t;//vec.push_back(0);//vec.push_back(1);for(int i=0;i<1000000;i++){vec.push_back(i);}std::cout<<"End"<<std::endl;}int main() {std::cout<<"std vector cost:"<<std::endl;TestStdVec();std::cout<<"pmr vector cost:"<<std::endl;TestPmrVec();
}

其中PerfSum.hpp在《Modern C++ idiom3:RAII》中有提到。编译运行结果:

[mzhai@std_polymorphic_pmr]$ g++ compare_speed.cpp -std=c++17 -g
[mzhai@std_polymorphic_pmr]$ ./a.out
std vector cost:
Endtook 19171 microseconds.
pmr vector cost:
Endtook 56134 microseconds.

可见pmr反而比普通的vector慢了大约3倍。
这里我还是坚持我一贯的写作风格:先preview结果给大家,尽量一句话说明白,没时间的读者可以节约时间去干点别的,有时间且有兴趣了解细节的读者可以慢慢往下看。
preview:虽然pmr预分配的内存空间,但是后面vector既有capacity不够时需要copy/move旧的数据到新分配的空间去,pmr::vector是一个个元素move过去的;而普通vector是调用memmove把所有数据一股脑move过去的。

注意:pmr是c++17开始才有的standard library features, gcc从9.1开始支持。

3. pmr慢的原因

启动perf, 查热点:

[mzhai@std_polymorphic_pmr]$ sudo sysctl -w kernel.kptr_restrict=0
sudo sysctl -w kernel.perf_event_paranoid=0
[sudo] password for mzhai:
kernel.kptr_restrict = 0
kernel.perf_event_paranoid = 0
[mzhai@std_polymorphic_pmr]$ perf record -a -g ./a.out
std vector cost:
Endtook 17302 microseconds.
pmr vector cost:
Endtook 58350 microseconds.
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.100 MB perf.data (369 samples) ]
[mzhai@std_polymorphic_pmr]$ perf report

在这里插入图片描述
找到__uninitialized_copy_a的实现,我的机器在目录/usr/include/c++/11/bits/stl_uninitialized.h中:

请添加图片描述
从perf report能隐约看出调用栈,__uninitialized_copy_a是从push_back -> _M_realloc_insert 调过来的,从名字猜也能猜到是vector旧的分配的空间不够了需要reallocate, 分配完新的空间后需要调用__uninitialized_copy_a把旧的数据copy或move过来,但是重点是:这里竟然是for循环,是一个个copy或move过来的!

4. std::allocator快的原因

作为对比,我们查下std::vector 空间不够是怎么做的?
读者可自行调试TestStdVec,我这里直接上代码:

#0  std::__relocate_a_1<int, int> (__first=0x41b2e8, __last=0x41b2e8, __result=0x41b2cc) at /usr/include/c++/11/bits/stl_uninitialized.h:1012
#1  0x000000000040451f in std::__relocate_a<int*, int*, std::allocator<int> > (__first=0x41b2e8, __last=0x41b2e8, __result=0x41b2cc, __alloc=...)at /usr/include/c++/11/bits/stl_uninitialized.h:1046
#2  0x000000000040423f in std::vector<int, std::allocator<int> >::_S_do_relocate (__first=0x41b2e8, __last=0x41b2e8, __result=0x41b2cc, __alloc=...)at /usr/include/c++/11/bits/stl_vector.h:456
#3  0x0000000000403e5d in std::vector<int, std::allocator<int> >::_S_relocate (__first=0x41b2e8, __last=0x41b2e8, __result=0x41b2cc, __alloc=...)at /usr/include/c++/11/bits/stl_vector.h:469
#4  0x000000000040376a in std::vector<int, std::allocator<int> >::_M_realloc_insert<int const&> (this=0x7fffffffdb70, __position=0)at /usr/include/c++/11/bits/vector.tcc:468
#5  0x0000000000402f24 in std::vector<int, std::allocator<int> >::push_back (this=0x7fffffffdb70, __x=@0x7fffffffdb3c: 2)

请添加图片描述
直接调用__builtin_memmove把旧数据一股脑memmove过去,能不快吗?!
可能有读者有一点点疑问:想__builtin_memmove真的调用memmove吗?简单看下汇编就知道啦。请添加图片描述

5. 何时调用memmove何时调用for循环

通过上面的分析,我们现在知道了pmr慢而普通allocator快的原因了,接着新的问题来了:为什么pmr不走memmove? 什么条件下走memmove哪?
在这里插入图片描述

/usr/include/c++/11/bits/vector.tcc
423   template<typename _Tp, typename _Alloc>424     template<typename... _Args>425       void426       vector<_Tp, _Alloc>::427       _M_realloc_insert(iterator __position, _Args&&... __args)434     {458 #if __cplusplus >= 201103L459       if _GLIBCXX17_CONSTEXPR (_S_use_relocate())460         {461           __new_finish = _S_relocate(__old_start, __position.base(),462                      __new_start, _M_get_Tp_allocator());463464           ++__new_finish;465466           __new_finish = _S_relocate(__position.base(), __old_finish,467                      __new_finish, _M_get_Tp_allocator());468         }469       else470 #endif471         {472           __new_finish473         = std::__uninitialized_move_if_noexcept_a474         (__old_start, __position.base(),475          __new_start, _M_get_Tp_allocator());476477           ++__new_finish;478479           __new_finish480         = std::__uninitialized_move_if_noexcept_a481         (__position.base(), __old_finish,482          __new_finish, _M_get_Tp_allocator());483         }

关键点在_S_use_relocate()的值,此函数的定义如下:

/usr/include/c++/11/bits/stl_vector.h430       static constexpr bool431       _S_nothrow_relocate(true_type)432       {433     return noexcept(std::__relocate_a(std::declval<pointer>(),434                       std::declval<pointer>(),435                       std::declval<pointer>(),436                       std::declval<_Tp_alloc_type&>()));437       }438439       static constexpr bool440       _S_nothrow_relocate(false_type)441       { return false; }442443       static constexpr bool444       _S_use_relocate()445       {446     // Instantiating std::__relocate_a might cause an error outside the447     // immediate context (in __relocate_object_a's noexcept-specifier),448     // so only do it if we know the type can be move-inserted into *this.449     return _S_nothrow_relocate(__is_move_insertable<_Tp_alloc_type>{});450       }
  1. 首先看__is_move_insertable<_Tp_alloc_type>{},无论_Tp_alloc_type是std::allocator 还是std::pmr::polymorphic_allocator,结果是true.
785   template<typename _Alloc>
786     struct __is_move_insertable
787     : __is_alloc_insertable_impl<_Alloc, typename _Alloc::value_type>::type
788     { };
789
790   // std::allocator<_Tp> just requires MoveConstructible
791   template<typename _Tp>
792     struct __is_move_insertable<allocator<_Tp>>
793     : is_move_constructible<_Tp>
794     { };

std::allocator匹配后者(791行),is_move_constructible为true;
pmr匹配前者(785行), 匹配下面的两者之一。
此处用了SFINAE思想,如果_Alloc能用_Tp做参数类型构造一个_ValueT*对象,则匹配true的这个模板,否则false, 分别对应__is_move_insertable的结果此处用了SFINAE思想,如果_Alloc能用_Tp做参数类型构造一个_ValueT*对象,则匹配true的这个模板,否则false, 分别对应__is_move_insertable的结果。std::allocator及polymorphic_allocator都有construct函数,构造int对象没问题。
2. 看std::__relocate_a是否抛出异常,__relocate_a会看__relocate_a_1是否抛出异常,而__relocate_a_1会看__relocate_object_a是否抛出异常,__relocate_object_a是否抛出异常取决于:

984   template<typename _Tp, typename _Up, typename _Allocator>985     inline void986     __relocate_object_a(_Tp* __restrict __dest, _Up* __restrict __orig,987             _Allocator& __alloc)988     noexcept(noexcept(std::allocator_traits<_Allocator>::construct(__alloc,989              __dest, std::move(*__orig)))990          && noexcept(std::allocator_traits<_Allocator>::destroy(991                 __alloc, std::__addressof(*__orig))))

std::allocator_traits<_Allocator>::construct 取决于 std::is_nothrow_constructible<_Up, _Args…>::value
std::allocator_traits<_Allocator>::destroy 取决于 is_nothrow_destructible<_Up>::value

以上仅当所有情况都是noexcept为true才会走_S_relocate的分支(不走__uninitialized_move_if_noexcept_a)。

不过除此之外__relocate_a_1还有一个特例:

1000   template<typename _Tp, typename = void>
1001     struct __is_bitwise_relocatable
1002     : is_trivial<_Tp> { };
1003
1004   template <typename _Tp, typename _Up>
1005     inline __enable_if_t<std::__is_bitwise_relocatable<_Tp>::value, _Tp*>
1006     __relocate_a_1(_Tp* __first, _Tp* __last,
1007            _Tp* __result, allocator<_Up>&) noexcept
1008     {
1009       ptrdiff_t __count = __last - __first;
1010       if (__count > 0)
1011     __builtin_memmove(__result, __first, __count * sizeof(_Tp));
1012       return __result + __count;
1013     }

如果_Tp(我的例子里是int)是trivial的 且 分配器是std::allocator,则__relocate_a_1是noexcept的,则走_S_relocate的分支(不走__uninitialized_move_if_noexcept_a)

草草的画了一个流程图(大家凑合看):
在这里插入图片描述

上面两条捋了一遍_S_use_relocate()的结果, 但并不是它是true就一定用memmove,

/usr/include/c++/11/bits/stl_vector.h452       static pointer453       _S_do_relocate(pointer __first, pointer __last, pointer __result,454              _Tp_alloc_type& __alloc, true_type) noexcept455       {456     return std::__relocate_a(__first, __last, __result, __alloc);457       }458459       static pointer460       _S_do_relocate(pointer, pointer, pointer __result,461              _Tp_alloc_type&, false_type) noexcept462       { return __result; }463464       static pointer465       _S_relocate(pointer __first, pointer __last, pointer __result,466           _Tp_alloc_type& __alloc) noexcept467       {468     using __do_it = __bool_constant<_S_use_relocate()>;469     return _S_do_relocate(__first, __last, __result, __alloc, __do_it{});470       }

459行永远也走不到,因为_S_use_relocate()位true才会调用到这,而其值为true则一定匹配452行的函数特化版本。
__relocate_a最终调用到__relocate_a_1,上面提到过它有两个版本:
只有_Tp是trivial 且 用std::allocator 才会调用memmove。

1004   template <typename _Tp, typename _Up>
1005     inline __enable_if_t<std::__is_bitwise_relocatable<_Tp>::value, _Tp*>
1006     __relocate_a_1(_Tp* __first, _Tp* __last,
1007            _Tp* __result, allocator<_Up>&) noexcept
1008     {
1009       ptrdiff_t __count = __last - __first;
1010       if (__count > 0)
1011     __builtin_memmove(__result, __first, __count * sizeof(_Tp));
1012       return __result + __count;
1013     }
1014
1015   template <typename _InputIterator, typename _ForwardIterator,
1016         typename _Allocator>
1017     inline _ForwardIterator
1018     __relocate_a_1(_InputIterator __first, _InputIterator __last,
1019            _ForwardIterator __result, _Allocator& __alloc)
1020     noexcept(noexcept(std::__relocate_object_a(std::addressof(*__result),
1021                            std::addressof(*__first),
1022                            __alloc)))
1023     {
1024       typedef typename iterator_traits<_InputIterator>::value_type
1025     _ValueType;
1026       typedef typename iterator_traits<_ForwardIterator>::value_type
1027     _ValueType2;
1028       static_assert(std::is_same<_ValueType, _ValueType2>::value,
1029       "relocation is only possible for values of the same type");
1030       _ForwardIterator __cur = __result;
1031       for (; __first != __last; ++__first, (void)++__cur)

6. 看一个简单的class的例子

上面我用的是int,下面用一个简单的类看看,验证下上面的流程图。
我就不分析了,大家执行代码看结果来理解吧。

#include<iostream>
#include<memory_resource>
#include<vector>
#include "../PerfSum.hpp"
using namespace std;struct MyClass{MyClass(int _i):i(_i) {}int i;
};void TestPmrVec(){char buffer[1000000*4] = {0};std::pmr::monotonic_buffer_resource pool{std::data(buffer), std::size(buffer)};std::pmr::vector<MyClass> vec{&pool};PerfSum t;for(int i=0;i<1000000;i++){vec.push_back(MyClass{i});}std::cout<<"End"<<std::endl;}void TestStdVec(){std::vector<MyClass> vec ;PerfSum t;for(int i=0;i<1000000;i++){vec.push_back(MyClass{i});}std::cout<<"End"<<std::endl;}int main() {std::cout<<"is_move_constructible<MyClass>: "<<std::is_move_constructible_v<MyClass><<std::endl;std::cout<<"is_nothrow_constructible<MyClass>: "<<std::is_nothrow_constructible_v<MyClass,MyClass&&><<std::endl;std::cout<<"is_nothrow_destructible<MyClass>: "<<std::is_nothrow_destructible_v<MyClass><<std::endl;std::cout<<"trivail<MyClass>: "<<std::is_trivial_v<MyClass><<std::endl;std::cout<<"std vector cost:"<<std::endl;TestStdVec();std::cout<<"pmr vector cost:"<<std::endl;TestPmrVec();
}

7. release版本的差距没那么大

我们废了很大的经历才捋明白何时用memmove何时不用,而且debug版本之间的性能差距达3倍之多,确实值得我们调查一番。但令人失望又惊喜的是:release版本的性能差距竟然只有1.1倍左右:

[mzhai@std_polymorphic_pmr]$ g++ compare_speed.cpp -std=c++17 -O
std vector cost:
Endtook 5349 microseconds.
pmr vector cost:
Endtook 6207 microseconds.
[mzhai@std_polymorphic_pmr]$ ./a.out
std vector cost:
Endtook 4822 microseconds.
pmr vector cost:
Endtook 5160 microseconds.

不由得感叹:现在的编译器真厉害!

这篇关于Modern C++ 内存篇1 - std::allocator VS pmr的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/693887

相关文章

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象