基于SpringBoot和PostGIS的震中影响范围可视化实践

2024-02-08 11:52

本文主要是介绍基于SpringBoot和PostGIS的震中影响范围可视化实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、基础数据

1、地震基础信息

2、全国行政村 

 二、Java后台服务设计

1、实体类设计

2、Mapper类设计

3、控制器设计

三、前端展示

1、初始化图例

2、震中位置及影响范围标记

3、行政村点查询及标记 

 总结


前言

        地震等自然灾害目前还是依然不能进行准确的预测,当强烈度的地震发生时,其破坏性往往是极大的,给人民群众带来极大的损失。通常,在地震发生之后,应急救援部门会组织相应的救援,在救援的时候往往会根据震中位置以及地震的强度而不一样。这里不过多阐述如何进行灾害的应急救援。作为一名地理信息开发人员,我们可否基于GIS,为相关部门提供一定的信息基础和决策支持。

        这里根据全国的行政村级点位数据,通过根据地震的震中位置,根据距离震中的位置,比如1公里范围,1.0公里-3.5公里,3.5公里到5公里等(这里的距离区间设置只是一种参考,实际情况下肯定要考虑其它的因素)。

        本文将结合地震信息数据,基于SpringBoot框架开发,PostGis数据库作为空间数据库,Leaflet作为WebGIS可视化组件,重点讲解如何进行地震影响范围分析。如果您对WebGIS的开发有兴趣的读者有一定的参考价值。

一、基础数据

        由于是WebGIS项目,因此需要叠加影像底图、地震基础信息、全国行政村点位信息。其中影像底图采用xyz瓦片的形式组织,已经在本地离线化。而地震基础信息、全国行政点位信息采用PostGIS数据库进行存储,其数据已经由后台程序进行存储至空间数据库中。下面对这两张表和具体数据进行简要介绍。

1、地震基础信息

        地震基础信息的表逻辑结构如下:

        表的物理sql语句如下:

-- ----------------------------
-- Table structure for biz_earthquake_info
-- ----------------------------
DROP TABLE IF EXISTS "public"."biz_earthquake_info";
CREATE TABLE "public"."biz_earthquake_info" ("id" int8 NOT NULL,"eq_time" timestamp(6) NOT NULL,"eq_lng" varchar(32) COLLATE "pg_catalog"."default" NOT NULL,"eq_lat" varchar(32) COLLATE "pg_catalog"."default" NOT NULL,"eq_depth" varchar(16) COLLATE "pg_catalog"."default" NOT NULL,"eq_level" varchar(8) COLLATE "pg_catalog"."default","eq_location" varchar(255) COLLATE "pg_catalog"."default","create_by" varchar(64) COLLATE "pg_catalog"."default","create_time" timestamp(6),"update_by" varchar(64) COLLATE "pg_catalog"."default","update_time" timestamp(6)
)
;
COMMENT ON COLUMN "public"."biz_earthquake_info"."id" IS '主键';
COMMENT ON COLUMN "public"."biz_earthquake_info"."eq_time" IS '发震时间';
COMMENT ON COLUMN "public"."biz_earthquake_info"."eq_lng" IS '发震经度';
COMMENT ON COLUMN "public"."biz_earthquake_info"."eq_lat" IS '发震纬度';
COMMENT ON COLUMN "public"."biz_earthquake_info"."eq_depth" IS '震源深度,单位千米';
COMMENT ON COLUMN "public"."biz_earthquake_info"."eq_level" IS '震级';
COMMENT ON COLUMN "public"."biz_earthquake_info"."eq_location" IS '震中位置';
COMMENT ON COLUMN "public"."biz_earthquake_info"."create_by" IS '创建人';
COMMENT ON COLUMN "public"."biz_earthquake_info"."create_time" IS '创建时间';
COMMENT ON COLUMN "public"."biz_earthquake_info"."update_by" IS '修改人';
COMMENT ON COLUMN "public"."biz_earthquake_info"."update_time" IS '修改时间';-- ----------------------------
-- Indexes structure for table biz_earthquake_info
-- ----------------------------
CREATE INDEX "idx_biz_earthquake_info_depth" ON "public"."biz_earthquake_info" USING btree ("eq_depth" COLLATE "pg_catalog"."default" "pg_catalog"."text_ops" ASC NULLS LAST
);
CREATE INDEX "idx_biz_earthquake_info_etime" ON "public"."biz_earthquake_info" USING btree ("eq_time" "pg_catalog"."timestamp_ops" ASC NULLS LAST
);
CREATE INDEX "idx_biz_earthquake_info_qlevel" ON "public"."biz_earthquake_info" USING btree ("eq_level" COLLATE "pg_catalog"."default" "pg_catalog"."text_ops" ASC NULLS LAST
);-- ----------------------------
-- Primary Key structure for table biz_earthquake_info
-- ----------------------------
ALTER TABLE "public"."biz_earthquake_info" ADD CONSTRAINT "pk_biz_earthquake_info" PRIMARY KEY ("id");

2、全国行政村 

        全国行政村点位表逻辑结构如下所示:

        行政村点位的物理sql语句如下:

 

-- ----------------------------
-- Table structure for biz_village
-- ----------------------------
DROP TABLE IF EXISTS "public"."biz_village";
CREATE TABLE "public"."biz_village" ("id" int8 NOT NULL,"province_name" varchar(64) COLLATE "pg_catalog"."default" NOT NULL,"city_code" varchar(16) COLLATE "pg_catalog"."default" NOT NULL,"city_name" varchar(512) COLLATE "pg_catalog"."default","area_code" varchar(64) COLLATE "pg_catalog"."default","area_name" varchar(512) COLLATE "pg_catalog"."default","township_code" varchar(64) COLLATE "pg_catalog"."default","township_name" varchar(512) COLLATE "pg_catalog"."default","village_code" varchar(64) COLLATE "pg_catalog"."default","village_name" varchar(512) COLLATE "pg_catalog"."default","address" varchar(512) COLLATE "pg_catalog"."default","type" varchar(32) COLLATE "pg_catalog"."default","lng" varchar(24) COLLATE "pg_catalog"."default","lat" varchar(24) COLLATE "pg_catalog"."default","geom" "public"."geometry"
)
;
COMMENT ON COLUMN "public"."biz_village"."id" IS '主键';
COMMENT ON COLUMN "public"."biz_village"."province_name" IS '省份名称';
COMMENT ON COLUMN "public"."biz_village"."city_code" IS '市级编码';
COMMENT ON COLUMN "public"."biz_village"."city_name" IS '市级名称';
COMMENT ON COLUMN "public"."biz_village"."area_code" IS '区县编码';
COMMENT ON COLUMN "public"."biz_village"."area_name" IS '区县名称';
COMMENT ON COLUMN "public"."biz_village"."township_code" IS '乡镇编码';
COMMENT ON COLUMN "public"."biz_village"."township_name" IS '乡镇名称';
COMMENT ON COLUMN "public"."biz_village"."village_code" IS '乡村编码';
COMMENT ON COLUMN "public"."biz_village"."village_name" IS '乡村名称';
COMMENT ON COLUMN "public"."biz_village"."address" IS '地址';
COMMENT ON COLUMN "public"."biz_village"."type" IS '类型';
COMMENT ON COLUMN "public"."biz_village"."lng" IS '经度';
COMMENT ON COLUMN "public"."biz_village"."lat" IS '纬度';
COMMENT ON COLUMN "public"."biz_village"."geom" IS 'geom';-- ----------------------------
-- Indexes structure for table biz_village
-- ----------------------------
CREATE INDEX "idx_biz_village_areacode" ON "public"."biz_village" USING btree ("area_code" COLLATE "pg_catalog"."default" "pg_catalog"."text_ops" ASC NULLS LAST
);
CREATE INDEX "idx_biz_village_city_code" ON "public"."biz_village" USING btree ("city_code" COLLATE "pg_catalog"."default" "pg_catalog"."text_ops" ASC NULLS LAST
);
CREATE INDEX "idx_biz_village_geom" ON "public"."biz_village" USING gist ("geom" "public"."gist_geometry_ops_2d"
);-- ----------------------------
-- Primary Key structure for table biz_village
-- ----------------------------
ALTER TABLE "public"."biz_village" ADD CONSTRAINT "pk_biz_village" PRIMARY KEY ("id");

 二、Java后台服务设计

        这里的应用程序后台采用Java语言开发,开发框架使用SpringBoot,数据库访问采用Mybatis-Plus。系统整体采用MVC三层设计架构,当前展示的系统访问压力不大,采用单体架构模式。

1、实体类设计

        这里仅提供地震覆盖范围查询,因此仅需定义VO视图对象即可,关键代码如下:

package com.yelang.project.extend.earthquake.domain;
import java.io.Serializable;
import java.math.BigDecimal;
import lombok.AllArgsConstructor;
import lombok.Getter;
import lombok.NoArgsConstructor;
import lombok.Setter;
import lombok.ToString;
@NoArgsConstructor
@AllArgsConstructor
@Setter
@Getter
@ToString
public class EarthquakeVillageVo implements Serializable{private static final long serialVersionUID = -4857307169183564693L;private BigDecimal dist;//距离private String address;//位置private String villageName;//村庄名称private String lng;//经度private String lat;
}

2、Mapper类设计

package com.yelang.project.extend.earthquake.mapper;
import java.util.List;
import org.apache.ibatis.annotations.Param;
import org.apache.ibatis.annotations.Select;
import com.baomidou.mybatisplus.core.mapper.BaseMapper;
import com.yelang.project.extend.earthquake.domain.EarthquakeVillageVo;
import com.yelang.project.extend.earthquake.domain.Village;
/*** 乡村行政区划接口* @author yelangking**/
public interface VillageMapper extends BaseMapper<Village>{static final String FIND_LIST_BY_LNG_LAT = "<script>"+ "with bp as ( select st_geomfromtext(${pointinfo},4326) :: geography tp ) "+ "select st_distance(t.geom :: geography, bp.tp) dist,t.address,t.village_name,t.lng,t.lat from biz_village t, "+ " bp where st_dwithin(t.geom :: geography, bp.tp, 5000 ) order by dist "+ "</script>";@Select(FIND_LIST_BY_LNG_LAT)List<EarthquakeVillageVo> findListByLngLat(@Param("pointinfo")String pointinfo);
}

        这里定义了数据查询的逻辑,需要注意的是,我们的数据表在设计的时候用的是geometry的字段,而且用的是4326的坐标系,4326默认的单位是度。而日常生活中使用的米作为长度单位。为了解决这个问题,我们可以将数据类型转换成geography,就可以实现按米来搜索,以上的sql就是一个实例,其中5000米表示5公里,实际项目中可以实现动态传入,这里仅演示功能。

3、控制器设计

        service业务逻辑层比较简单,仅实现将控制器的参数传给mapper进行方法调用,因此忽略不写。这里将控制器的代码贴出,供参考:

/*** 震中位置5公里分析* @param lng 经度* @param lat 纬度* @return
*/@PostMapping("/villageinfo")@ResponseBodypublic AjaxResult earthinfo(String lng,String lat){List<EarthquakeVillageVo> list = earthquakeInfoService.findListByLngLat(lng, lat);AjaxResult ar = AjaxResult.success();ar.put("data", list);return ar;
}

三、前端展示

        前端采用我们熟悉的Leafletjs,而前端开发框架采用bootstrap和Jquery,想改成vue或者React的朋友可以自己进行相应的改造,这里暂不提供改造代码。

        前端展示页面主要实现地震信息的查询,地图浏览,缩放、漫游,地震信息分析,地震信息top提示,三级范围展示、图例展示等等。这些功能的具体实例,在之前的博客中有相关的涉及,在此不再进行赘述,仅提供关键代码供参考。

1、初始化图例

        图例主要用于理解地图上的标记,这里我们根据距离震中的不同距离来标识不同的行政点位。关键代码如下:   

function initLegend(){const legend = L.control.Legend({position: "bottomleft",collapsed: false,symbolWidth: 24,opacity: 1,title:"图例",column: 2,legends: [ {label: ">3.5公里",type: "circle",radius: 6,color: "green",fillColor: "green",fillOpacity: 0.6,weight: 2}, {label: "1-3.5公里",type: "circle",radius: 6,color: "yellow",fillColor: "yellow",fillOpacity: 0.6,weight: 2}, {label: "小于1公里",type: "circle",radius: 6,color: "red",fillColor: "red",fillOpacity: 0.6,weight: 2}]}).addTo(mymap);}

2、震中位置及影响范围标记

        震中位置采用marker的方式进行标记,而影响范围则使用园来标识。

3、行政村点查询及标记 

        这里使用ajax的方式,由前端将地震发生的经纬度作为接口参数传递到后台,后台经过计算,将不同范围的数据返回到前端,包括经纬度位置,还有距离震中的距离、行政区名称等等。再由前端动态绘制相应的界面。关键代码如下:

$.ajax({type: "post",url: prefix + "/villageinfo",data: {"lng":lng,"lat":lat},success: function(rsData) {var villageData = rsData.data;for (var i = 0; i < villageData.length; i++) {var info = villageData[i];var dist = info.dist;var strokeStyleSet = "green";if(parseFloat(dist) > 1000 && parseFloat(dist) <= 3500){strokeStyleSet = "yellow";}if(parseFloat(dist) <= 1000){strokeStyleSet = "red";}var marker = L.circleMarker(new L.LatLng(info.lat, info.lng), {radius: 8,labelStyle: {text: info.villageName,rotation: 0,zIndex: i,strokeStyle :strokeStyleSet}});var content = "<strong>地址:</strong>"+info.address + "<br/><strong>震中位置:</strong>"+name;content += "<br/><strong>距离震中(千米):</strong>"+info.dist;marker.bindPopup(content);marker.addTo(showLayerGroup);}mymap.fitBounds(showLayerGroup.getBounds());}

        最终实际效果如下:

 总结

以上就是本文的主要内容,本文将结合地震信息数据,基于SpringBoot框架开发,PostGis数据库作为空间数据库,Leaflet作为WebGIS可视化组件,重点讲解如何进行地震影响范围分析。行文仓促,不当之处,还请各位朋友在评论区批评指正。

这篇关于基于SpringBoot和PostGIS的震中影响范围可视化实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/690949

相关文章

Java中对象的创建和销毁过程详析

《Java中对象的创建和销毁过程详析》:本文主要介绍Java中对象的创建和销毁过程,对象的创建过程包括类加载检查、内存分配、初始化零值内存、设置对象头和执行init方法,对象的销毁过程由垃圾回收机... 目录前言对象的创建过程1. 类加载检查2China编程. 分配内存3. 初始化零值4. 设置对象头5. 执行

SpringBoot整合easy-es的详细过程

《SpringBoot整合easy-es的详细过程》本文介绍了EasyES,一个基于Elasticsearch的ORM框架,旨在简化开发流程并提高效率,EasyES支持SpringBoot框架,并提供... 目录一、easy-es简介二、实现基于Spring Boot框架的应用程序代码1.添加相关依赖2.添

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

SpringBoot中整合RabbitMQ(测试+部署上线最新完整)的过程

《SpringBoot中整合RabbitMQ(测试+部署上线最新完整)的过程》本文详细介绍了如何在虚拟机和宝塔面板中安装RabbitMQ,并使用Java代码实现消息的发送和接收,通过异步通讯,可以优化... 目录一、RabbitMQ安装二、启动RabbitMQ三、javascript编写Java代码1、引入

spring-boot-starter-thymeleaf加载外部html文件方式

《spring-boot-starter-thymeleaf加载外部html文件方式》本文介绍了在SpringMVC中使用Thymeleaf模板引擎加载外部HTML文件的方法,以及在SpringBoo... 目录1.Thymeleaf介绍2.springboot使用thymeleaf2.1.引入spring

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在