量子计算的历史性突破:CIM实现10万自旋规模

2024-02-07 23:10

本文主要是介绍量子计算的历史性突破:CIM实现10万自旋规模,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要:相干伊辛机 (CIM) 使用光量子计算方案取得突破性进展,在计算规模上已经大大领先其他技术路线,体现出规模化优势,并计划将率先投入实用。

9月底在《Science Advance》上发表的一篇论文指出,相干伊辛机 (CIM) 这种光量子计算方案又取得了重大技术突破,实现了100,512自旋的CIM计算实验,率先突破10万大关,在所有量子计算技术方案中遥遥领先。该论文由日本电报电话公司(以下简称“NTT”)与日本国立信息学研究所(以下简称“NII”)合作发表。

什么是CIM

目前,经典计算机的研发已经逼近物理极限,摩尔定律逐渐失效。各种新型的计算体系结构,尤其是基于特定物理系统的量子计算机的研究正在飞速发展,其中的超导、光量子、离子阱等技术方案已经广为人知。进入2021年来,光量子计算路线在技术研发、融资规模、市场化应用上都取得了令人瞩目的进展,因此业界有人称2021年为“光量子元年”。

相干伊辛机(CIM)正是一种使用光量子的量子计算方案,因为具有多种优势和潜力,是目前的热门方案之一。包括NTT、NII、NASA、斯坦福、加州理工、马里兰、东京大学等研究院所和院校,以及中国的玻色量子科技公司,都在从事着CIM方向的研发工作。

CIM 的概念图

简单来说,CIM就是通过一种称为“DOPO”的激光脉冲来高速求解组合优化问题的专用量子计算机。它使用DOPO网络来模拟统计物理中的“伊辛模型”,因为DOPO中的光子能量远大于环境中热噪声的光子能量,这使研究人员能够在室温下通过一套物理系统来实现光子的低温自旋行为。

CIM 实验系统的详细信息

PZT:带压电元件的光纤相位控制器;BPF:光学带通滤波器;PMF:偏振保持光纤;ADC:模数转换器;DAC:数模转换器。(图片来源:《100000—spin coherent Ising machine》论文【1】)

从理论上说,CIM可以用于各种NP-hard问题的求解,并且有进行门计算的潜力。因为CIM使用的伊辛模型是一个建模各种复杂系统的典范,广泛存在于自然、社会、人工等复杂系统中,可应用于材料相变、蛋白质优化、股票市场、种族隔离、政治选举等各种不同领域的分析优化。当下神经科学和深度学习的很多最新进展也和这个模型相关,因此伊辛模型还可以用来构建模神经网络系统,进而搭建可适应环境变化而不断自主学习的计算机,也就是“量子大脑”。

如何实现10万个自旋的CIM

那么如何实现10万自旋量子比特规模的CIM呢?

论文中提到,在该CIM系统中,时分复用的 DOPO 脉冲作为压缩真空脉冲注入在非线性光波导中,并在 5 公里的光纤腔中循环,这些脉冲同时经历数字辅助相互作用和非线性振幅演化,利用DOPO脉冲之间的量子效应,以此寻找伊辛模型的基态能态,最终通过超过100,000个 DOPO 脉冲的集体相变映射,求解出最优的结果。

NTT基础研究实验室的高级杰出研究员武居弘樹博士(图片来源:NTT)

早在2016年,NTT基础研究实验室的研究团队就发布了一套CIM系统,该系统利用测量/反馈的技术在远程光纤腔中完全耦合生成了2000个DOPO脉冲,可实现多达400万个耦合。作为该研发团队技术带头人,NTT基础研究实验室的高级杰出研究员武居弘樹博士(Dr. Hiroki Takesue)告诉量子前哨,在此基础上就可进一步将CIM的规模拓展到10万自旋。而这一过程中,最大的挑战就在于光学部分和测量反馈部分。

关于光学部分,武居弘樹博士表示:“我们将光纤腔的长度从 1 公里增加到 5 公里,泵脉冲的重复频率从 1 GHz 增加到 5 GHz,从而在光纤腔中产生大于10 万个 DOPO 脉冲。但是相应的,较大的光纤腔会导致较大的光损失,这意味着需要增加非线性波导的增益,用于相位敏感放大。通过改进制造工艺以及光纤耦合模块的设计,我们开发了效率更高的非线性波导 ——也就是PPLN 波导模块。”

100,512 自旋 CIM 的外观(图片来源:NTT【2】)

此外,光纤的长度越长,腔体的不稳定性越大,这主要是由环境温度波动引起的。为了抑制这种不稳定性,武居弘樹带领团队开发了一个系统,使用Peltier设备精确控制如此长距离的光纤(除了锁相腔系统)。由于本次实验仅仅通过增加光纤长度和重复频率就做到了10万量子比特,因此这一CIM系统的规模仍有进一步扩大规模的余地。

武居弘樹博士告诉量子前哨:“事实上,此前我们就已经报告了使用20公里光纤腔和10GHz重复频率,最终生成了100万个DOPO脉冲的实验,论文发表于(Opt. Lett.41,4273-4276(2016))。”

至于测量反馈部分,武居团队开发了一套系统,能在25微秒内执行100k x 100k矩阵和100k元元载体的乘法计算,即可满足5公里光纤腔的脉冲往返时间的要求。武居弘樹强调:“该系统所需FPGA芯片超过50个。如果未来还想把它扩展至能够满足100 万自旋系统计算,我们可能需要开发用于矩阵计算的特殊电路 (ASIC)系统。”

基于上述光学系统和测量/反馈系统的改进,武居团队最终完成了目前世界上最大规模的CIM,可以实现10万个脉冲和高达100亿个相互耦合的DOPO网络。对于包含10万个计算参量的大规模组合优化问题,经过实验测试,该解决方案比在经典计算机上实施的模拟退火算法 (SA) 快 1000 倍以上,且精度更高。

突破10万量子比特的意义及未来展望

武居弘樹博士告诉量子前哨,此次研究成果具有以下重要的里程碑意义: 

第一,它是用光学实现的最大规模的伊辛机系统;

第二,该CIM在 600 微秒内找到了 100,000 节点全连接图的最大割问题的的合理近似解决方案,比在经典计算机上采用模拟退火算法的方案(用时约为 0.7 秒)快 1000 倍以上;

第三,这种在 DOPO 阈值附近操作的 CIM 相干量子计算系统可以提供广泛的解决方案分布,与模拟退火算法获得的分布相比,提供的解决方案更优。这使得CIM 更适用于需要快速求解(如组合优化和机器学习)等应用场景。

对于武居团队的成就,康奈尔大学物理学助理教授,2019 年谷歌量子研究奖获得者彼得·麦克马洪(Peter McMahon)评价道:“我认为NTT 此次十万自旋的CIM系统绝对是一项重要的工程成就,这表明CIM的算法和机制可以真正扩展到十万次自旋以上,并且仍然运行良好。”

目前CIM相干量子计算方案是已实现的量子比特数最大的方案,也是主流方案中有望最快实现百万量子比特的方案。而且CIM通过对激光的精准控制,不需要超低温环境,在室温下即可运行,具有稳定的状态,稳定的操控,和稳定的结果“三稳”特点,运行成本远远低于其它技术方案,商业化的潜力更好。

尽管CIM的自旋量子比特与通用量子计算的量子比特数无法直接进行比较,但此次突破也可认为是一个里程碑级别的事件。在全球量子计算领域技术争夺战中,CIM无疑在量子比特数规模上领先了超导、离子阱等其它路线几个身位,率先进入了十万量子比特时代,距离百万量子比特又接近了一步。在接下来的战局中,CIM量子计算方案还将拿出什么“独门绝技”与超导、离子阱等方案竞争,并率先实现商业化应用,让我们拭目以待!

参考文献:

1.T.Honjo,T.Sonobe,K.Inaba,T.Inagaki,T.lkuta,Y.Yamada,T.Kazama,K.Enbutsu T.Umeki,R.Kasahara,K.-i.Kawarabayashi,H.Takesue,100,000-spin coherent lsing machine. Sci.Adv.7,eabh0952(2021).

2.https://group.ntt/jp/newsrelease/2021/09/30/210930a.html

文:慕一/王珩

编辑:王凯/王衍

这篇关于量子计算的历史性突破:CIM实现10万自旋规模的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/689193

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

黑神话,XSKY 星飞全闪单卷性能突破310万

当下,云计算仍然是企业主要的基础架构,随着关键业务的逐步虚拟化和云化,对于块存储的性能要求也日益提高。企业对于低延迟、高稳定性的存储解决方案的需求日益迫切。为了满足这些日益增长的 IO 密集型应用场景,众多云服务提供商正在不断推陈出新,推出具有更低时延和更高 IOPS 性能的云硬盘产品。 8 月 22 日 2024 DTCC 大会上(第十五届中国数据库技术大会),XSKY星辰天合正式公布了基于星

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc