STM32 硬件随机数发生器(RNG)

2024-02-07 20:44

本文主要是介绍STM32 硬件随机数发生器(RNG),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

STM32 硬件随机数发生器


文章目录

  • STM32 硬件随机数发生器
  • 前言
  • 第1章 随机数发生器简介
    • 1.1 RNG主要特性
    • 1.2.RNG应用
  • 第2章 RNG原理框图
  • 第3章 RNG相关寄存器
    • 3.1 RNG 控制寄存器 (RNG_CR)
    • 3.2 RNG 状态寄存器 (RNG_SR)
    • 3.3 RNG 数据寄存器 (RNG_DR)
  • 第3章 RNG代码部分
  • 第4章 STM32F1 软件模拟RNG


前言

在日常生活中有很多情况都有用到随机数的应用,比如手机验证码、快递取件码等。


第1章 随机数发生器简介

随机数发生器(Random Number Generators,RNG),用于生成随机数的程序或硬件
STM32F4自带了硬件随机数发生器(RNG),RNG 处理器是一个以连续模拟噪声为基础的随机数发生器,在主机读数时提供一个 32 位的(真)随机数。

RNG 已通过 FIPS PUB 140-2( 2001 年 10 月 10 日)测试,成功率达 99%。

注意:M3内核等低端些的的芯片不具有这个硬件随机数发生器,具体需要参考“芯片选型手册”! 如果要产生随机数,只能利用软件方式模拟生成伪随机数。

在这里插入图片描述

在这里插入图片描述

1.1 RNG主要特性

1、提供由模拟量发生器产生的 32 位随机数。
2、两个连续随机数的间隔为 40 个 PLL48CLK 时钟信号周期。
3、通过监视 RNG 熵来标识异常行为(产生稳定值,或产生稳定的值序列)。
4、可被禁止以降低功耗。
5、真随机数:完全随机,毫无规律(STM32的部分型号上具备真随机数发生器)。
6、伪随机数:伪随机数是用确定性的算法计算出的随机数序列,并非真正的随机。

1.2.RNG应用

验证码、快递取件码、贪吃蛇游戏食物坐标等应用。

第2章 RNG原理框图

STM32F4 的随机数发生器框图如下图所示:

在这里插入图片描述

随机数发生器采用模拟电路实现的。此电路产生馈入线性反馈移位寄存器 (RNG_LFSR) 的种子,用于生成 32 位随机数。该模拟电路由几个环形振荡器组成,振荡器的输出进行异或运算以产生种子。

RNG_LFSR 由专用时钟 (PLL48CLK) 按恒定频率提供时钟信息,因此随机数质量与 HCLK 频率无关。当将大量种子引入 RNG_LFSR 后,RNG_LFSR 的内容会传入数据寄存器 (RNG_DR)。同时,系统会监视模拟种子和专用时钟 PLL48CLK。状态位( RNG_SR 寄存器中)指示何时在种子上出现异常序列,或指示何时PLL48CLK 时钟频率过低,出现过低时可以由RNG_SR寄存器的对应位读取,如果设置了中断,则在检测到错误时生成中断。

第3章 RNG相关寄存器

3.1 RNG 控制寄存器 (RNG_CR)

在这里插入图片描述

该寄存器主要用RNGEN 位,该位用于使能随机数发生器,所以设置为 1。

3.2 RNG 状态寄存器 (RNG_SR)

在这里插入图片描述

该寄存器需要用到DRDY 位,该位用于表示 RNG_DR 寄存器包含的随机数数据是否有效,如果该位为 1,则说明 RNG_DR 的数据是有效的,可以读取出来了。读 RNG_DR后,该位自动清零。

3.3 RNG 数据寄存器 (RNG_DR)

在这里插入图片描述

RNG_DR 寄存器是只读寄存器,可以读取该寄存器获得 32 位随机数值。此寄存器在最多 40 个 PLL48CLK 时钟周期后,又可以提供新的随机数值。

第3章 RNG代码部分

由于这个RNG涉及的寄存器比较少,可以直接用寄存器方式来操作即可,就不用库函数方式了,寄存器看上去就比较简洁。

示例代码如下:

//初始化RNG
//返回值:0,成功;1,失败
u8 RNG_Init(void)
{u16 retry=0; RCC->AHB2ENR=1<<6;	//开启RNG时钟,来自PLL48CLKRNG->CR|=1<<2;		//使能RNGwhile((RNG->SR&0X01)==0&&retry<10000)	//等待随机数就绪{retry++;delay_us(100);}if(retry>=10000)return 1;//随机数产生器工作不正常return 0;
}//得到随机数
//返回值:获取到的随机数
u32 RNG_Get_RandomNum(void)
{	 while((RNG->SR&0X01)==0);	//等待随机数就绪  return RNG->DR;	
}//得到某个范围内的随机数
//min,max,最小,最大值.
//返回值:得到的随机数(rval),满足:min<=rval<=max
int RNG_Get_RandomRange(int min,int max)
{ return RNG_Get_RandomNum()%(max-min+1)+min;
}
int main(void)
{u32 random = 0;delay_init(168);        // 初始化 延时函数uart_init(115200);      // 初始化串口,波特率为115200RNG_Init();             // 初始化 RNG 硬件接口while(1){random = RNG_Get_Random_Num();        // 获取一个32位的随机数 printf("random = %d\r\n", random);    // 显示32位随机数 random = RNG_Get_Random_Range(10, 20);// 获取[10, 20]区间内的随机数 printf("random = %d\r\n", random);    // 显示区间随机数 delay_ms(500);}
}

下载例程后,可以在串口看到不断输出随机数了。


第4章 STM32F1 软件模拟RNG

单纯用软件方式模拟生成一个伪随机数

#include "delay.h"
#include "usart.h"
#include <stdlib.h>           //* 使用rand函数,库文件,使用尖括号 *//* 设置随机数的取值区间范围 */
#define RANDOM_MIN    1000    // 随机数最小值
#define RANDOM_MAX    9999    // 随机数最大值int main(void)
{u32 random_value = 0;   // 保存随机值delay_init();           // 初始化 延时函数uart_init(115200);      // 初始化串口,波特率为115200while(1){/* 随机数生成 */random_value = rand();     //产生32位随机数 printf("当前随机数为:%d\r\n", random_value);random_value = rand() % (RANDOM_MAX + 1 - RANDOM_MIN) + RANDOM_MIN;// 产生区间随机数 printf("当前随机数为:%d\r\n", random_value);delay_ms(500);}
}

这种用软件生成的伪随机数只能说是接近实验目的效果,但是并不可取的方案。

这篇关于STM32 硬件随机数发生器(RNG)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688883

相关文章

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

STM32(十一):ADC数模转换器实验

AD单通道: 1.RCC开启GPIO和ADC时钟。配置ADCCLK分频器。 2.配置GPIO,把GPIO配置成模拟输入的模式。 3.配置多路开关,把左面通道接入到右面规则组列表里。 4.配置ADC转换器, 包括AD转换器和AD数据寄存器。单次转换,连续转换;扫描、非扫描;有几个通道,触发源是什么,数据对齐是左对齐还是右对齐。 5.ADC_CMD 开启ADC。 void RCC_AD

STM32内部闪存FLASH(内部ROM)、IAP

1 FLASH简介  1 利用程序存储器的剩余空间来保存掉电不丢失的用户数据 2 通过在程序中编程(IAP)实现程序的自我更新 (OTA) 3在线编程(ICP把整个程序都更新掉) 1 系统的Bootloader写死了,只能用串口下载到指定的位置,启动方式也不方便需要配置BOOT引脚触发启动  4 IAP(自己写的Bootloader,实现程序升级) 1 比如蓝牙转串口,

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类

STM32 ADC+DMA导致写FLASH失败

最近用STM32G070系列的ADC+DMA采样时,遇到了一些小坑记录一下; 一、ADC+DMA采样时进入死循环; 解决方法:ADC-dma死循环问题_stm32 adc dma死机-CSDN博客 将ADC的DMA中断调整为最高,且增大ADCHAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_buffer, ADC_Buffer_Size); 的ADC_Bu

明明的随机数处理问题分析与解决方案

明明的随机数处理问题分析与解决方案 引言问题描述解决方案数据结构设计具体步骤伪代码C语言实现详细解释读取输入去重操作排序操作输出结果复杂度分析 引言 明明生成了N个1到500之间的随机整数,我们需要对这些整数进行处理,删去重复的数字,然后进行排序并输出结果。本文将详细讲解如何通过算法、数据结构以及C语言来解决这个问题。我们将会使用数组和哈希表来实现去重操作,再利用排序算法对结果

基于stm32的河流检测系统-单片机毕业设计

文章目录 前言资料获取设计介绍功能介绍具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机设计精品