【Redis深入】字典rehash图解

2024-02-07 06:38

本文主要是介绍【Redis深入】字典rehash图解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引入

在讲rehash之前,我们先回顾一下字典的结构

1.字典dict.h/dict的源码

/** 字典*/
typedef struct dict {// 类型特定函数dictType *type;// 私有数据void *privdata;// 哈希表dictht ht[2];// rehash 索引// 当 rehash 不在进行时,值为 -1int rehashidx; /* rehashing not in progress if rehashidx == -1 */// 目前正在运行的安全迭代器的数量int iterators; /* number of iterators currently running */} dict;

2.哈希表dict.h/dictht的源码

/* This is our hash table structure. Every dictionary has two of this as we* implement incremental rehashing, for the old to the new table. */
/** 哈希表** 每个字典都使用两个哈希表,从而实现渐进式 rehash 。*/
typedef struct dictht {// 哈希表数组dictEntry **table;// 哈希表大小unsigned long size;// 哈希表大小掩码,用于计算索引值// 总是等于 size - 1unsigned long sizemask;// 该哈希表已有节点的数量unsigned long used;} dictht;

3.哈希表节点dict.h/dictEntry的源码

/** 哈希表节点*/
typedef struct dictEntry {// 键void *key;// 值union {void *val;uint64_t u64;int64_t s64;} v;// 指向下个哈希表节点,形成链表struct dictEntry *next;} dictEntry;

4.一个普通的字典结构(没有进行rehash)

这里写图片描述

rehash过程图解

1.进行rehash的原因

随着操作的不断进行,哈希表保存的键值对会逐渐的增多或减少,为了让哈希表的负载因子维持在一个合理的范围内,当哈希表保存的键值对数量太多或太少,就对哈希表进行扩展或收缩。

2.rehash的步骤

(1)为字典的ht[1]哈希表分配空间

  • 若是扩展操作,那么ht[1]的大小为>=ht[0].used*2的2^n
  • 若是收缩操作,那么ht[1]的大小为>=ht[0].used的2^n

(2)将保存在ht[0]中的所有键值对rehash到ht[1]中,rehash指重新计算键的哈希值和索引值,然后将键值对放置到ht[1]哈希表的指定位置上。

(3)当ht[0]的所有键值对都迁移到了ht[1]之后(ht[0]变为空表),释放ht[0],将ht[1]设置为ht[0],新建空白的哈希表ht[1],以备下次rehash使用。

3.rehash图解

(1)执行rehash之前的字典

这里写图片描述

(2)ht[0].used的值为4,而4*2=8,大于等于它的2^n是8,所以将ht[1]的大小设置为8

这里写图片描述

(3)将ht[0]的四个键值对都rehash到ht[1]中,这时ht[0]为null

这里写图片描述

(4)释放ht[0],并将ht[1]设置为ht[0],然后为ht[1]分配一个空白的哈希表,哈希表大小由4扩容为8

这里写图片描述

4.扩展与收缩的条件

  • 当以下条件满足任意一个时,程序就会对哈希表进行扩展操作

    • 服务器目前没有执行bgsave或bgrewriteaof命令,并且哈希表的负载因子>=1
    • 服务器目前正在执行bgsave或bgrewriteaof命令,并且哈希表的负载因子>=5
  • 负载因子的计算
    load_factor=ht[0].used/ht[0].size

  • 当负载因子的值小于0.1时,程序就会对哈希表进行收缩操作

渐进式rehash

1.渐进式rehash的原因

整个rehash过程并不是一步完成的,而是分多次、渐进式的完成。如果哈希表中保存着数量巨大的键值对时,若一次进行rehash,很有可能会导致服务器宕机。

2.渐进式rehash的步骤

  • 为ht[1]分配空间,让字典同时持有ht[0]和ht[1]两个哈希表
  • 维持索引计数器变量rehashidx,并将它的值设置为0,表示rehash开始
  • 每次对字典执行增删改查时,将ht[0]的rehashidx索引上的所有键值对rehash到ht[1],将rehashidx值+1。
  • 当ht[0]的所有键值对都被rehash到ht[1]中,程序将rehashidx的值设置为-1,表示rehash操作完成

注:渐进式rehash的好处在于它采取分为而治的方式,将rehash键值对的计算均摊到每个字典增删改查操作,避免了集中式rehash的庞大计算量。

3.渐进式rehash图解

  • 渐进式rehash之前的字典

这里写图片描述

  • rehash索引0上的键值对

这里写图片描述

  • rehash索引1上的键值对

这里写图片描述

  • rehash索引2上的键值对

这里写图片描述

  • rehash索引3上的键值对

这里写图片描述

  • 渐进式rehash完成

这里写图片描述



本人才疏学浅,若有错,请指出,谢谢!
如果你有更好的建议,可以留言我们一起讨论,共同进步!
衷心的感谢您能耐心的读完本篇博文!

参考书籍:《Redis设计与实现(第二版)》—黄健宏

 

 

 

文章转自: https://blog.csdn.net/baiye_xing/article/details/76088425

这篇关于【Redis深入】字典rehash图解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/686829

相关文章

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

深入手撕链表

链表 分类概念单链表增尾插头插插入 删尾删头删删除 查完整实现带头不带头 双向链表初始化增尾插头插插入 删查完整代码 数组 分类 #mermaid-svg-qKD178fTiiaYeKjl {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

POJ2001字典树

给出n个单词,求出每个单词的非公共前缀,如果没有,则输出自己。 import java.io.BufferedReader;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWriter;import java.io.UnsupportedEncodingException;

深入理解数据库的 4NF:多值依赖与消除数据异常

在数据库设计中, "范式" 是一个常常被提到的重要概念。许多初学者在学习数据库设计时,经常听到第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及 BCNF(Boyce-Codd范式)。这些范式都旨在通过消除数据冗余和异常来优化数据库结构。然而,当我们谈到 4NF(第四范式)时,事情变得更加复杂。本文将带你深入了解 多值依赖 和 4NF,帮助你在数据库设计中消除更高级别的异常。 什么是

Redis中使用布隆过滤器解决缓存穿透问题

一、缓存穿透(失效)问题 缓存穿透是指查询一个一定不存在的数据,由于缓存中没有命中,会去数据库中查询,而数据库中也没有该数据,并且每次查询都不会命中缓存,从而每次请求都直接打到了数据库上,这会给数据库带来巨大压力。 二、布隆过滤器原理 布隆过滤器(Bloom Filter)是一种空间效率很高的随机数据结构,它利用多个不同的哈希函数将一个元素映射到一个位数组中的多个位置,并将这些位置的值置

图解TCP三次握手|深度解析|为什么是三次

写在前面 这篇文章我们来讲解析 TCP三次握手。 TCP 报文段 传输控制块TCB:存储了每一个连接中的一些重要信息。比如TCP连接表,指向发送和接收缓冲的指针,指向重传队列的指针,当前的发送和接收序列等等。 我们再来看一下TCP报文段的组成结构 TCP 三次握手 过程 假设有一台客户端,B有一台服务器。最初两端的TCP进程都是处于CLOSED关闭状态,客户端A打开链接,服务器端