LeetCode--代码详解 2341.数组能形成多少数对

2024-02-07 03:04

本文主要是介绍LeetCode--代码详解 2341.数组能形成多少数对,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2341.数组能形成多少数对

题目

给你一个下标从 0 开始的整数数组 nums 。在一步操作中,你可以执行以下步骤:

  • 从 nums 选出 两个 相等的 整数
  • 从 nums 中移除这两个整数,形成一个 数对

请你在 nums 上多次执行此操作直到无法继续执行。

返回一个下标从 0 开始、长度为 2 的整数数组 answer 作为答案,其中 answer[0] 是形成的数对数目,answer[1] 是对 nums 尽可能执行上述操作后剩下的整数数目。

示例 1:

输入:nums = [1,3,2,1,3,2,2]
输出:[3,1]
解释:
nums[0] 和 nums[3] 形成一个数对,并从 nums 中移除,nums = [3,2,3,2,2] 。
nums[0] 和 nums[2] 形成一个数对,并从 nums 中移除,nums = [2,2,2] 。
nums[0] 和 nums[1] 形成一个数对,并从 nums 中移除,nums = [2] 。
无法形成更多数对。总共形成 3 个数对,nums 中剩下 1 个数字。

示例 2:

输入:nums = [1,1]
输出:[1,0]
解释:nums[0] 和 nums[1] 形成一个数对,并从 nums 中移除,nums = [] 。
无法形成更多数对。总共形成 1 个数对,nums 中剩下 0 个数字。

示例 3:

输入:nums = [0]
输出:[0,1]
解释:无法形成数对,nums 中剩下 1 个数字。

提示:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 100

思路

遇到这种问题千万不要考虑两层for循环(时间复杂度太高)

java中可以使用HashMap和HashSet(原理都是一样)

这道题可以巧妙利用数组+两次遍历(时间复杂度最低),利用数组的值来表示新数组的索引,新数组的值则表示次数,最后遍历新数组统计即可

java代码

class Solution {public int[] numberOfPairs(int[] nums) {int[] cnt = new int[101];// 遍历输入的nums数组,对cnt数组中对应的数字进行计数for (int x : nums) {++cnt[x];  }int count = 0;for (int c : cnt) { //遍历cnt数组,计算出现次数能够被2整除的数字的数量count += c / 2;}return new int[] {count, nums.length - count * 2};}
}

这篇关于LeetCode--代码详解 2341.数组能形成多少数对的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/686332

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

hdu 1166 敌兵布阵(树状数组 or 线段树)

题意是求一个线段的和,在线段上可以进行加减的修改。 树状数组的模板题。 代码: #include <stdio.h>#include <string.h>const int maxn = 50000 + 1;int c[maxn];int n;int lowbit(int x){return x & -x;}void add(int x, int num){while

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP