linker list

2024-02-06 14:04
文章标签 list linker

本文主要是介绍linker list,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

linker list是利用lds 描述符实现同类型数据连续排布的一种机制。
下面是uboot里面的应用说明

lds文件里面需要增加section描述:

. = ALIGN(4);.u_boot_list : {KEEP(*(SORT(.u_boot_list*)));}

linker_list.h:

/* SPDX-License-Identifier: GPL-2.0+ */
/** include/linker_lists.h** Implementation of linker-generated arrays** Copyright (C) 2012 Marek Vasut <marex@denx.de>*/#ifndef __LINKER_LISTS_H__
#define __LINKER_LISTS_H__#include <linux/compiler.h>/** There is no use in including this from ASM files.* So just don't define anything when included from ASM.*/#if !defined(__ASSEMBLY__)/*** llsym() - Access a linker-generated array entry* @_type:	Data type of the entry* @_name:	Name of the entry* @_list:	name of the list. Should contain only characters allowed*		in a C variable name!*/
#define llsym(_type, _name, _list) \((_type *)&_u_boot_list_2_##_list##_2_##_name)/*** ll_entry_declare() - Declare linker-generated array entry* @_type:	Data type of the entry* @_name:	Name of the entry* @_list:	name of the list. Should contain only characters allowed*		in a C variable name!** This macro declares a variable that is placed into a linker-generated* array. This is a basic building block for more advanced use of linker-* generated arrays. The user is expected to build their own macro wrapper* around this one.** A variable declared using this macro must be compile-time initialized.** Special precaution must be made when using this macro:** 1) The _type must not contain the "static" keyword, otherwise the*    entry is generated and can be iterated but is listed in the map*    file and cannot be retrieved by name.** 2) In case a section is declared that contains some array elements AND*    a subsection of this section is declared and contains some elements,*    it is imperative that the elements are of the same type.** 3) In case an outer section is declared that contains some array elements*    AND an inner subsection of this section is declared and contains some*    elements, then when traversing the outer section, even the elements of*    the inner sections are present in the array.** Example:** ::**   ll_entry_declare(struct my_sub_cmd, my_sub_cmd, cmd_sub) = {*           .x = 3,*           .y = 4,*   };*/
#define ll_entry_declare(_type, _name, _list)				\_type _u_boot_list_2_##_list##_2_##_name __aligned(4)		\__attribute__((unused,				\section(".u_boot_list_2_"#_list"_2_"#_name)))/*** ll_entry_declare_list() - Declare a list of link-generated array entries* @_type:	Data type of each entry* @_name:	Name of the entry* @_list:	name of the list. Should contain only characters allowed*		in a C variable name!** This is like ll_entry_declare() but creates multiple entries. It should* be assigned to an array.** ::**   ll_entry_declare_list(struct my_sub_cmd, my_sub_cmd, cmd_sub) = {*        { .x = 3, .y = 4 },*        { .x = 8, .y = 2 },*        { .x = 1, .y = 7 }*   };*/
#define ll_entry_declare_list(_type, _name, _list)			\_type _u_boot_list_2_##_list##_2_##_name[] __aligned(4)		\__attribute__((unused,				\section(".u_boot_list_2_"#_list"_2_"#_name)))/** We need a 0-byte-size type for iterator symbols, and the compiler* does not allow defining objects of C type 'void'. Using an empty* struct is allowed by the compiler, but causes gcc versions 4.4 and* below to complain about aliasing. Therefore we use the next best* thing: zero-sized arrays, which are both 0-byte-size and exempt from* aliasing warnings.*//*** ll_entry_start() - Point to first entry of linker-generated array* @_type:	Data type of the entry* @_list:	Name of the list in which this entry is placed** This function returns ``(_type *)`` pointer to the very first entry of a* linker-generated array placed into subsection of .u_boot_list section* specified by _list argument.** Since this macro defines an array start symbol, its leftmost index* must be 2 and its rightmost index must be 1.** Example:** ::**   struct my_sub_cmd *msc = ll_entry_start(struct my_sub_cmd, cmd_sub);*/
#define ll_entry_start(_type, _list)					\
({									\static char start[0] __aligned(4) __attribute__((unused,	\section(".u_boot_list_2_"#_list"_1")));			\(_type *)&start;						\
})/*** ll_entry_end() - Point after last entry of linker-generated array* @_type:	Data type of the entry* @_list:	Name of the list in which this entry is placed*		(with underscores instead of dots)** This function returns ``(_type *)`` pointer after the very last entry of* a linker-generated array placed into subsection of .u_boot_list* section specified by _list argument.** Since this macro defines an array end symbol, its leftmost index* must be 2 and its rightmost index must be 3.** Example:** ::**   struct my_sub_cmd *msc = ll_entry_end(struct my_sub_cmd, cmd_sub);*/
#define ll_entry_end(_type, _list)					\
({									\static char end[0] __aligned(4) __attribute__((unused,		\section(".u_boot_list_2_"#_list"_3")));			\(_type *)&end;							\
})
/*** ll_entry_count() - Return the number of elements in linker-generated array* @_type:	Data type of the entry* @_list:	Name of the list of which the number of elements is computed** This function returns the number of elements of a linker-generated array* placed into subsection of .u_boot_list section specified by _list* argument. The result is of an unsigned int type.** Example:** ::**   int i;*   const unsigned int count = ll_entry_count(struct my_sub_cmd, cmd_sub);*   struct my_sub_cmd *msc = ll_entry_start(struct my_sub_cmd, cmd_sub);*   for (i = 0; i < count; i++, msc++)*           printf("Entry %i, x=%i y=%i\n", i, msc->x, msc->y);*/
#define ll_entry_count(_type, _list)					\({								\_type *start = ll_entry_start(_type, _list);		\_type *end = ll_entry_end(_type, _list);		\unsigned int _ll_result = end - start;			\_ll_result;						\})/*** ll_entry_get() - Retrieve entry from linker-generated array by name* @_type:	Data type of the entry* @_name:	Name of the entry* @_list:	Name of the list in which this entry is placed** This function returns a pointer to a particular entry in linker-generated* array identified by the subsection of u_boot_list where the entry resides* and it's name.** Example:** ::**   ll_entry_declare(struct my_sub_cmd, my_sub_cmd, cmd_sub) = {*           .x = 3,*           .y = 4,*   };*   ...*   struct my_sub_cmd *c = ll_entry_get(struct my_sub_cmd, my_sub_cmd, cmd_sub);*/
#define ll_entry_get(_type, _name, _list)				\({								\extern _type _u_boot_list_2_##_list##_2_##_name;	\_type *_ll_result =					\&_u_boot_list_2_##_list##_2_##_name;		\_ll_result;						\})/*** ll_start() - Point to first entry of first linker-generated array* @_type:	Data type of the entry** This function returns ``(_type *)`` pointer to the very first entry of* the very first linker-generated array.** Since this macro defines the start of the linker-generated arrays,* its leftmost index must be 1.** Example:** ::**   struct my_sub_cmd *msc = ll_start(struct my_sub_cmd);*/
#define ll_start(_type)							\
({									\static char start[0] __aligned(4) __attribute__((unused,	\section(".u_boot_list_1")));				\(_type *)&start;						\
})/*** ll_end() - Point after last entry of last linker-generated array* @_type:	Data type of the entry** This function returns ``(_type *)`` pointer after the very last entry of* the very last linker-generated array.** Since this macro defines the end of the linker-generated arrays,* its leftmost index must be 3.** Example:** ::**   struct my_sub_cmd *msc = ll_end(struct my_sub_cmd);*/
#define ll_end(_type)							\
({									\static char end[0] __aligned(4) __attribute__((unused,		\section(".u_boot_list_3")));				\(_type *)&end;							\
})#endif /* __ASSEMBLY__ */#endif	/* __LINKER_LISTS_H__ */

ll_entry_declare_list 和ll_entry_declare差别是前者是数组声明,一次可以声明多个条目,后者只声明(定义)一个条目。

ll_entry_start(_type, _list) 获取该类型列表首个条目地址

ll_entry_get(_type, _name, _list) 根据名字 返回条目地址

ll_entry_count(_type, _list) 返回该类型条目数

使用实例

参考driver的定义:

struct driver {char *name;enum uclass_id id;const struct udevice_id *of_match;int (*bind)(struct udevice *dev);int (*probe)(struct udevice *dev);int (*remove)(struct udevice *dev);int (*unbind)(struct udevice *dev);int (*ofdata_to_platdata)(struct udevice *dev);int (*child_post_bind)(struct udevice *dev);int (*child_pre_probe)(struct udevice *dev);int (*child_post_remove)(struct udevice *dev);int priv_auto_alloc_size;int platdata_auto_alloc_size;int per_child_auto_alloc_size;int per_child_platdata_auto_alloc_size;const void *ops;	/* driver-specific operations */uint32_t flags;
};/* Declare a new U-Boot driver */
#define U_BOOT_DRIVER(__name)						\ll_entry_declare(struct driver, __name, driver)

usb hub driver

U_BOOT_DRIVER(usb_generic_hub) = {
.name = “usb_hub”,
.id = UCLASS_USB_HUB,
.of_match = usb_hub_ids,
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};

这篇关于linker list的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/684549

相关文章

java streamfilter list 过滤的实现

《javastreamfilterlist过滤的实现》JavaStreamAPI中的filter方法是过滤List集合中元素的一个强大工具,可以轻松地根据自定义条件筛选出符合要求的元素,本文就来... 目录1. 创建一个示例List2. 使用Stream的filter方法进行过滤3. 自定义过滤条件1. 定

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

java两个List的交集,并集方式

《java两个List的交集,并集方式》文章主要介绍了Java中两个List的交集和并集的处理方法,推荐使用Apache的CollectionUtils工具类,因为它简单且不会改变原有集合,同时,文章... 目录Java两个List的交集,并集方法一方法二方法三总结java两个List的交集,并集方法一

Java集合中的List超详细讲解

《Java集合中的List超详细讲解》本文详细介绍了Java集合框架中的List接口,包括其在集合中的位置、继承体系、常用操作和代码示例,以及不同实现类(如ArrayList、LinkedList和V... 目录一,List的继承体系二,List的常用操作及代码示例1,创建List实例2,增加元素3,访问元

C#比较两个List集合内容是否相同的几种方法

《C#比较两个List集合内容是否相同的几种方法》本文详细介绍了在C#中比较两个List集合内容是否相同的方法,包括非自定义类和自定义类的元素比较,对于非自定义类,可以使用SequenceEqual、... 目录 一、非自定义类的元素比较1. 使用 SequenceEqual 方法(顺序和内容都相等)2.

Java中List转Map的几种具体实现方式和特点

《Java中List转Map的几种具体实现方式和特点》:本文主要介绍几种常用的List转Map的方式,包括使用for循环遍历、Java8StreamAPI、ApacheCommonsCollect... 目录前言1、使用for循环遍历:2、Java8 Stream API:3、Apache Commons

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

Collection List Set Map的区别和联系

Collection List Set Map的区别和联系 这些都代表了Java中的集合,这里主要从其元素是否有序,是否可重复来进行区别记忆,以便恰当地使用,当然还存在同步方面的差异,见上一篇相关文章。 有序否 允许元素重复否 Collection 否 是 List 是 是 Set AbstractSet 否

【Python报错已解决】AttributeError: ‘list‘ object has no attribute ‘text‘

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 前言一、问题描述1.1 报错示例1.2 报错分析1.3 解决思路 二、解决方法2.1 方法一:检查属性名2.2 步骤二:访问列表元素的属性 三、其他解决方法四、总结 前言 在Python编程中,属性错误(At