漫话Redis源码之三十三

2024-02-06 09:48
文章标签 源码 redis 三十三 漫话

本文主要是介绍漫话Redis源码之三十三,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第一个函数是分配新的rax,  返回的是指针。这个函数对异常的考虑也还很全,如果获取不到内存,就返回NULL

/* Allocate a new rax and return its pointer. On out of memory the function* returns NULL. */
rax *raxNew(void) {rax *rax = rax_malloc(sizeof(*rax));if (rax == NULL) return NULL;rax->numele = 0;rax->numnodes = 1;rax->head = raxNewNode(0,0);if (rax->head == NULL) {rax_free(rax);return NULL;} else {return rax;}
}/* realloc the node to make room for auxiliary data in order* to store an item in that node. On out of memory NULL is returned. */
raxNode *raxReallocForData(raxNode *n, void *data) {if (data == NULL) return n; /* No reallocation needed, setting isnull=1 */size_t curlen = raxNodeCurrentLength(n);return rax_realloc(n,curlen+sizeof(void*));
}/* Set the node auxiliary data to the specified pointer. */
void raxSetData(raxNode *n, void *data) {n->iskey = 1;if (data != NULL) {n->isnull = 0;void **ndata = (void**)((char*)n+raxNodeCurrentLength(n)-sizeof(void*));memcpy(ndata,&data,sizeof(data));} else {n->isnull = 1;}
}/* Get the node auxiliary data. */
void *raxGetData(raxNode *n) {if (n->isnull) return NULL;void **ndata =(void**)((char*)n+raxNodeCurrentLength(n)-sizeof(void*));void *data;memcpy(&data,ndata,sizeof(data));return data;
}/* Add a new child to the node 'n' representing the character 'c' and return* its new pointer, as well as the child pointer by reference. Additionally* '***parentlink' is populated with the raxNode pointer-to-pointer of where* the new child was stored, which is useful for the caller to replace the* child pointer if it gets reallocated.** On success the new parent node pointer is returned (it may change because* of the realloc, so the caller should discard 'n' and use the new value).* On out of memory NULL is returned, and the old node is still valid. */
raxNode *raxAddChild(raxNode *n, unsigned char c, raxNode **childptr, raxNode ***parentlink) {assert(n->iscompr == 0);size_t curlen = raxNodeCurrentLength(n);n->size++;size_t newlen = raxNodeCurrentLength(n);n->size--; /* For now restore the orignal size. We'll update it only onsuccess at the end. *//* Alloc the new child we will link to 'n'. */raxNode *child = raxNewNode(0,0);if (child == NULL) return NULL;/* Make space in the original node. */raxNode *newn = rax_realloc(n,newlen);if (newn == NULL) {rax_free(child);return NULL;}n = newn;/* After the reallocation, we have up to 8/16 (depending on the system* pointer size, and the required node padding) bytes at the end, that is,* the additional char in the 'data' section, plus one pointer to the new* child, plus the padding needed in order to store addresses into aligned* locations.** So if we start with the following node, having "abde" edges.** Note:* - We assume 4 bytes pointer for simplicity.* - Each space below corresponds to one byte** [HDR*][abde][Aptr][Bptr][Dptr][Eptr]|AUXP|** After the reallocation we need: 1 byte for the new edge character* plus 4 bytes for a new child pointer (assuming 32 bit machine).* However after adding 1 byte to the edge char, the header + the edge* characters are no longer aligned, so we also need 3 bytes of padding.* In total the reallocation will add 1+4+3 bytes = 8 bytes:** (Blank bytes are represented by ".")** [HDR*][abde][Aptr][Bptr][Dptr][Eptr]|AUXP|[....][....]** Let's find where to insert the new child in order to make sure* it is inserted in-place lexicographically. Assuming we are adding* a child "c" in our case pos will be = 2 after the end of the following* loop. */int pos;for (pos = 0; pos < n->size; pos++) {if (n->data[pos] > c) break;}/* Now, if present, move auxiliary data pointer at the end* so that we can mess with the other data without overwriting it.* We will obtain something like that:** [HDR*][abde][Aptr][Bptr][Dptr][Eptr][....][....]|AUXP|*/unsigned char *src, *dst;if (n->iskey && !n->isnull) {src = ((unsigned char*)n+curlen-sizeof(void*));dst = ((unsigned char*)n+newlen-sizeof(void*));memmove(dst,src,sizeof(void*));}/* Compute the "shift", that is, how many bytes we need to move the* pointers section forward because of the addition of the new child* byte in the string section. Note that if we had no padding, that* would be always "1", since we are adding a single byte in the string* section of the node (where now there is "abde" basically).** However we have padding, so it could be zero, or up to 8.** Another way to think at the shift is, how many bytes we need to* move child pointers forward *other than* the obvious sizeof(void*)* needed for the additional pointer itself. */size_t shift = newlen - curlen - sizeof(void*);/* We said we are adding a node with edge 'c'. The insertion* point is between 'b' and 'd', so the 'pos' variable value is* the index of the first child pointer that we need to move forward* to make space for our new pointer.** To start, move all the child pointers after the insertion point* of shift+sizeof(pointer) bytes on the right, to obtain:** [HDR*][abde][Aptr][Bptr][....][....][Dptr][Eptr]|AUXP|*/src = n->data+n->size+raxPadding(n->size)+sizeof(raxNode*)*pos;memmove(src+shift+sizeof(raxNode*),src,sizeof(raxNode*)*(n->size-pos));/* Move the pointers to the left of the insertion position as well. Often* we don't need to do anything if there was already some padding to use. In* that case the final destination of the pointers will be the same, however* in our example there was no pre-existing padding, so we added one byte* plus thre bytes of padding. After the next memmove() things will look* like thata:** [HDR*][abde][....][Aptr][Bptr][....][Dptr][Eptr]|AUXP|*/if (shift) {src = (unsigned char*) raxNodeFirstChildPtr(n);memmove(src+shift,src,sizeof(raxNode*)*pos);}/* Now make the space for the additional char in the data section,* but also move the pointers before the insertion point to the right* by shift bytes, in order to obtain the following:** [HDR*][ab.d][e...][Aptr][Bptr][....][Dptr][Eptr]|AUXP|*/src = n->data+pos;memmove(src+1,src,n->size-pos);/* We can now set the character and its child node pointer to get:** [HDR*][abcd][e...][Aptr][Bptr][....][Dptr][Eptr]|AUXP|* [HDR*][abcd][e...][Aptr][Bptr][Cptr][Dptr][Eptr]|AUXP|*/n->data[pos] = c;n->size++;src = (unsigned char*) raxNodeFirstChildPtr(n);raxNode **childfield = (raxNode**)(src+sizeof(raxNode*)*pos);memcpy(childfield,&child,sizeof(child));*childptr = child;*parentlink = childfield;return n;
}

这篇关于漫话Redis源码之三十三的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/683910

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

Redis中使用布隆过滤器解决缓存穿透问题

一、缓存穿透(失效)问题 缓存穿透是指查询一个一定不存在的数据,由于缓存中没有命中,会去数据库中查询,而数据库中也没有该数据,并且每次查询都不会命中缓存,从而每次请求都直接打到了数据库上,这会给数据库带来巨大压力。 二、布隆过滤器原理 布隆过滤器(Bloom Filter)是一种空间效率很高的随机数据结构,它利用多个不同的哈希函数将一个元素映射到一个位数组中的多个位置,并将这些位置的值置

red5-server源码

red5-server源码:https://github.com/Red5/red5-server