漫话Redis源码之七十七

2024-02-06 09:38
文章标签 源码 redis 七十七 漫话

本文主要是介绍漫话Redis源码之七十七,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里主要讲位域操作,大家要对基本的位操作有深刻的理解:

/* The following set.*Bitfield and get.*Bitfield functions implement setting* and getting arbitrary size (up to 64 bits) signed and unsigned integers* at arbitrary positions into a bitmap.** The representation considers the bitmap as having the bit number 0 to be* the most significant bit of the first byte, and so forth, so for example* setting a 5 bits unsigned integer to value 23 at offset 7 into a bitmap* previously set to all zeroes, will produce the following representation:** +--------+--------+* |00000001|01110000|* +--------+--------+** When offsets and integer sizes are aligned to bytes boundaries, this is the* same as big endian, however when such alignment does not exist, its important* to also understand how the bits inside a byte are ordered.** Note that this format follows the same convention as SETBIT and related* commands.*/void setUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, uint64_t value) {uint64_t byte, bit, byteval, bitval, j;for (j = 0; j < bits; j++) {bitval = (value & ((uint64_t)1<<(bits-1-j))) != 0;byte = offset >> 3;bit = 7 - (offset & 0x7);byteval = p[byte];byteval &= ~(1 << bit);byteval |= bitval << bit;p[byte] = byteval & 0xff;offset++;}
}void setSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, int64_t value) {uint64_t uv = value; /* Casting will add UINT64_MAX + 1 if v is negative. */setUnsignedBitfield(p,offset,bits,uv);
}uint64_t getUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {uint64_t byte, bit, byteval, bitval, j, value = 0;for (j = 0; j < bits; j++) {byte = offset >> 3;bit = 7 - (offset & 0x7);byteval = p[byte];bitval = (byteval >> bit) & 1;value = (value<<1) | bitval;offset++;}return value;
}int64_t getSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {int64_t value;union {uint64_t u; int64_t i;} conv;/* Converting from unsigned to signed is undefined when the value does* not fit, however here we assume two's complement and the original value* was obtained from signed -> unsigned conversion, so we'll find the* most significant bit set if the original value was negative.** Note that two's complement is mandatory for exact-width types* according to the C99 standard. */conv.u = getUnsignedBitfield(p,offset,bits);value = conv.i;/* If the top significant bit is 1, propagate it to all the* higher bits for two's complement representation of signed* integers. */if (bits < 64 && (value & ((uint64_t)1 << (bits-1))))value |= ((uint64_t)-1) << bits;return value;
}/* The following two functions detect overflow of a value in the context* of storing it as an unsigned or signed integer with the specified* number of bits. The functions both take the value and a possible increment.* If no overflow could happen and the value+increment fit inside the limits,* then zero is returned, otherwise in case of overflow, 1 is returned,* otherwise in case of underflow, -1 is returned.** When non-zero is returned (overflow or underflow), if not NULL, *limit is* set to the value the operation should result when an overflow happens,* depending on the specified overflow semantics:** For BFOVERFLOW_SAT if 1 is returned, *limit it is set maximum value that* you can store in that integer. when -1 is returned, *limit is set to the* minimum value that an integer of that size can represent.** For BFOVERFLOW_WRAP *limit is set by performing the operation in order to* "wrap" around towards zero for unsigned integers, or towards the most* negative number that is possible to represent for signed integers. */#define BFOVERFLOW_WRAP 0
#define BFOVERFLOW_SAT 1
#define BFOVERFLOW_FAIL 2 /* Used by the BITFIELD command implementation. */int checkUnsignedBitfieldOverflow(uint64_t value, int64_t incr, uint64_t bits, int owtype, uint64_t *limit) {uint64_t max = (bits == 64) ? UINT64_MAX : (((uint64_t)1<<bits)-1);int64_t maxincr = max-value;int64_t minincr = -value;if (value > max || (incr > 0 && incr > maxincr)) {if (limit) {if (owtype == BFOVERFLOW_WRAP) {goto handle_wrap;} else if (owtype == BFOVERFLOW_SAT) {*limit = max;}}return 1;} else if (incr < 0 && incr < minincr) {if (limit) {if (owtype == BFOVERFLOW_WRAP) {goto handle_wrap;} else if (owtype == BFOVERFLOW_SAT) {*limit = 0;}}return -1;}return 0;handle_wrap:{uint64_t mask = ((uint64_t)-1) << bits;uint64_t res = value+incr;res &= ~mask;*limit = res;}return 1;
}int checkSignedBitfieldOverflow(int64_t value, int64_t incr, uint64_t bits, int owtype, int64_t *limit) {int64_t max = (bits == 64) ? INT64_MAX : (((int64_t)1<<(bits-1))-1);int64_t min = (-max)-1;/* Note that maxincr and minincr could overflow, but we use the values* only after checking 'value' range, so when we use it no overflow* happens. */int64_t maxincr = max-value;int64_t minincr = min-value;if (value > max || (bits != 64 && incr > maxincr) || (value >= 0 && incr > 0 && incr > maxincr)){if (limit) {if (owtype == BFOVERFLOW_WRAP) {goto handle_wrap;} else if (owtype == BFOVERFLOW_SAT) {*limit = max;}}return 1;} else if (value < min || (bits != 64 && incr < minincr) || (value < 0 && incr < 0 && incr < minincr)) {if (limit) {if (owtype == BFOVERFLOW_WRAP) {goto handle_wrap;} else if (owtype == BFOVERFLOW_SAT) {*limit = min;}}return -1;}return 0;handle_wrap:{uint64_t msb = (uint64_t)1 << (bits-1);uint64_t a = value, b = incr, c;c = a+b; /* Perform addition as unsigned so that's defined. *//* If the sign bit is set, propagate to all the higher order* bits, to cap the negative value. If it's clear, mask to* the positive integer limit. */if (bits < 64) {uint64_t mask = ((uint64_t)-1) << bits;if (c & msb) {c |= mask;} else {c &= ~mask;}}*limit = c;}return 1;
}/* Debugging function. Just show bits in the specified bitmap. Not used* but here for not having to rewrite it when debugging is needed. */
void printBits(unsigned char *p, unsigned long count) {unsigned long j, i, byte;for (j = 0; j < count; j++) {byte = p[j];for (i = 0x80; i > 0; i /= 2)printf("%c", (byte & i) ? '1' : '0');printf("|");}printf("\n");
}/* -----------------------------------------------------------------------------* Bits related string commands: GETBIT, SETBIT, BITCOUNT, BITOP.* -------------------------------------------------------------------------- */#define BITOP_AND   0
#define BITOP_OR    1
#define BITOP_XOR   2
#define BITOP_NOT   3#define BITFIELDOP_GET 0
#define BITFIELDOP_SET 1
#define BITFIELDOP_INCRBY 2/* This helper function used by GETBIT / SETBIT parses the bit offset argument* making sure an error is returned if it is negative or if it overflows* Redis 512 MB limit for the string value or more (server.proto_max_bulk_len).** If the 'hash' argument is true, and 'bits is positive, then the command* will also parse bit offsets prefixed by "#". In such a case the offset* is multiplied by 'bits'. This is useful for the BITFIELD command. */
int getBitOffsetFromArgument(client *c, robj *o, uint64_t *offset, int hash, int bits) {long long loffset;char *err = "bit offset is not an integer or out of range";char *p = o->ptr;size_t plen = sdslen(p);int usehash = 0;/* Handle #<offset> form. */if (p[0] == '#' && hash && bits > 0) usehash = 1;if (string2ll(p+usehash,plen-usehash,&loffset) == 0) {addReplyError(c,err);return C_ERR;}/* Adjust the offset by 'bits' for #<offset> form. */if (usehash) loffset *= bits;/* Limit offset to server.proto_max_bulk_len (512MB in bytes by default) */if ((loffset < 0) || (loffset >> 3) >= server.proto_max_bulk_len){addReplyError(c,err);return C_ERR;}*offset = loffset;return C_OK;
}/* This helper function for BITFIELD parses a bitfield type in the form* <sign><bits> where sign is 'u' or 'i' for unsigned and signed, and* the bits is a value between 1 and 64. However 64 bits unsigned integers* are reported as an error because of current limitations of Redis protocol* to return unsigned integer values greater than INT64_MAX.** On error C_ERR is returned and an error is sent to the client. */
int getBitfieldTypeFromArgument(client *c, robj *o, int *sign, int *bits) {char *p = o->ptr;char *err = "Invalid bitfield type. Use something like i16 u8. Note that u64 is not supported but i64 is.";long long llbits;if (p[0] == 'i') {*sign = 1;} else if (p[0] == 'u') {*sign = 0;} else {addReplyError(c,err);return C_ERR;}if ((string2ll(p+1,strlen(p+1),&llbits)) == 0 ||llbits < 1 ||(*sign == 1 && llbits > 64) ||(*sign == 0 && llbits > 63)){addReplyError(c,err);return C_ERR;}*bits = llbits;return C_OK;
}

这篇关于漫话Redis源码之七十七的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/683877

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

Redis中使用布隆过滤器解决缓存穿透问题

一、缓存穿透(失效)问题 缓存穿透是指查询一个一定不存在的数据,由于缓存中没有命中,会去数据库中查询,而数据库中也没有该数据,并且每次查询都不会命中缓存,从而每次请求都直接打到了数据库上,这会给数据库带来巨大压力。 二、布隆过滤器原理 布隆过滤器(Bloom Filter)是一种空间效率很高的随机数据结构,它利用多个不同的哈希函数将一个元素映射到一个位数组中的多个位置,并将这些位置的值置

red5-server源码

red5-server源码:https://github.com/Red5/red5-server