漫话Redis源码之七十七

2024-02-06 09:38
文章标签 源码 redis 七十七 漫话

本文主要是介绍漫话Redis源码之七十七,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里主要讲位域操作,大家要对基本的位操作有深刻的理解:

/* The following set.*Bitfield and get.*Bitfield functions implement setting* and getting arbitrary size (up to 64 bits) signed and unsigned integers* at arbitrary positions into a bitmap.** The representation considers the bitmap as having the bit number 0 to be* the most significant bit of the first byte, and so forth, so for example* setting a 5 bits unsigned integer to value 23 at offset 7 into a bitmap* previously set to all zeroes, will produce the following representation:** +--------+--------+* |00000001|01110000|* +--------+--------+** When offsets and integer sizes are aligned to bytes boundaries, this is the* same as big endian, however when such alignment does not exist, its important* to also understand how the bits inside a byte are ordered.** Note that this format follows the same convention as SETBIT and related* commands.*/void setUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, uint64_t value) {uint64_t byte, bit, byteval, bitval, j;for (j = 0; j < bits; j++) {bitval = (value & ((uint64_t)1<<(bits-1-j))) != 0;byte = offset >> 3;bit = 7 - (offset & 0x7);byteval = p[byte];byteval &= ~(1 << bit);byteval |= bitval << bit;p[byte] = byteval & 0xff;offset++;}
}void setSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, int64_t value) {uint64_t uv = value; /* Casting will add UINT64_MAX + 1 if v is negative. */setUnsignedBitfield(p,offset,bits,uv);
}uint64_t getUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {uint64_t byte, bit, byteval, bitval, j, value = 0;for (j = 0; j < bits; j++) {byte = offset >> 3;bit = 7 - (offset & 0x7);byteval = p[byte];bitval = (byteval >> bit) & 1;value = (value<<1) | bitval;offset++;}return value;
}int64_t getSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {int64_t value;union {uint64_t u; int64_t i;} conv;/* Converting from unsigned to signed is undefined when the value does* not fit, however here we assume two's complement and the original value* was obtained from signed -> unsigned conversion, so we'll find the* most significant bit set if the original value was negative.** Note that two's complement is mandatory for exact-width types* according to the C99 standard. */conv.u = getUnsignedBitfield(p,offset,bits);value = conv.i;/* If the top significant bit is 1, propagate it to all the* higher bits for two's complement representation of signed* integers. */if (bits < 64 && (value & ((uint64_t)1 << (bits-1))))value |= ((uint64_t)-1) << bits;return value;
}/* The following two functions detect overflow of a value in the context* of storing it as an unsigned or signed integer with the specified* number of bits. The functions both take the value and a possible increment.* If no overflow could happen and the value+increment fit inside the limits,* then zero is returned, otherwise in case of overflow, 1 is returned,* otherwise in case of underflow, -1 is returned.** When non-zero is returned (overflow or underflow), if not NULL, *limit is* set to the value the operation should result when an overflow happens,* depending on the specified overflow semantics:** For BFOVERFLOW_SAT if 1 is returned, *limit it is set maximum value that* you can store in that integer. when -1 is returned, *limit is set to the* minimum value that an integer of that size can represent.** For BFOVERFLOW_WRAP *limit is set by performing the operation in order to* "wrap" around towards zero for unsigned integers, or towards the most* negative number that is possible to represent for signed integers. */#define BFOVERFLOW_WRAP 0
#define BFOVERFLOW_SAT 1
#define BFOVERFLOW_FAIL 2 /* Used by the BITFIELD command implementation. */int checkUnsignedBitfieldOverflow(uint64_t value, int64_t incr, uint64_t bits, int owtype, uint64_t *limit) {uint64_t max = (bits == 64) ? UINT64_MAX : (((uint64_t)1<<bits)-1);int64_t maxincr = max-value;int64_t minincr = -value;if (value > max || (incr > 0 && incr > maxincr)) {if (limit) {if (owtype == BFOVERFLOW_WRAP) {goto handle_wrap;} else if (owtype == BFOVERFLOW_SAT) {*limit = max;}}return 1;} else if (incr < 0 && incr < minincr) {if (limit) {if (owtype == BFOVERFLOW_WRAP) {goto handle_wrap;} else if (owtype == BFOVERFLOW_SAT) {*limit = 0;}}return -1;}return 0;handle_wrap:{uint64_t mask = ((uint64_t)-1) << bits;uint64_t res = value+incr;res &= ~mask;*limit = res;}return 1;
}int checkSignedBitfieldOverflow(int64_t value, int64_t incr, uint64_t bits, int owtype, int64_t *limit) {int64_t max = (bits == 64) ? INT64_MAX : (((int64_t)1<<(bits-1))-1);int64_t min = (-max)-1;/* Note that maxincr and minincr could overflow, but we use the values* only after checking 'value' range, so when we use it no overflow* happens. */int64_t maxincr = max-value;int64_t minincr = min-value;if (value > max || (bits != 64 && incr > maxincr) || (value >= 0 && incr > 0 && incr > maxincr)){if (limit) {if (owtype == BFOVERFLOW_WRAP) {goto handle_wrap;} else if (owtype == BFOVERFLOW_SAT) {*limit = max;}}return 1;} else if (value < min || (bits != 64 && incr < minincr) || (value < 0 && incr < 0 && incr < minincr)) {if (limit) {if (owtype == BFOVERFLOW_WRAP) {goto handle_wrap;} else if (owtype == BFOVERFLOW_SAT) {*limit = min;}}return -1;}return 0;handle_wrap:{uint64_t msb = (uint64_t)1 << (bits-1);uint64_t a = value, b = incr, c;c = a+b; /* Perform addition as unsigned so that's defined. *//* If the sign bit is set, propagate to all the higher order* bits, to cap the negative value. If it's clear, mask to* the positive integer limit. */if (bits < 64) {uint64_t mask = ((uint64_t)-1) << bits;if (c & msb) {c |= mask;} else {c &= ~mask;}}*limit = c;}return 1;
}/* Debugging function. Just show bits in the specified bitmap. Not used* but here for not having to rewrite it when debugging is needed. */
void printBits(unsigned char *p, unsigned long count) {unsigned long j, i, byte;for (j = 0; j < count; j++) {byte = p[j];for (i = 0x80; i > 0; i /= 2)printf("%c", (byte & i) ? '1' : '0');printf("|");}printf("\n");
}/* -----------------------------------------------------------------------------* Bits related string commands: GETBIT, SETBIT, BITCOUNT, BITOP.* -------------------------------------------------------------------------- */#define BITOP_AND   0
#define BITOP_OR    1
#define BITOP_XOR   2
#define BITOP_NOT   3#define BITFIELDOP_GET 0
#define BITFIELDOP_SET 1
#define BITFIELDOP_INCRBY 2/* This helper function used by GETBIT / SETBIT parses the bit offset argument* making sure an error is returned if it is negative or if it overflows* Redis 512 MB limit for the string value or more (server.proto_max_bulk_len).** If the 'hash' argument is true, and 'bits is positive, then the command* will also parse bit offsets prefixed by "#". In such a case the offset* is multiplied by 'bits'. This is useful for the BITFIELD command. */
int getBitOffsetFromArgument(client *c, robj *o, uint64_t *offset, int hash, int bits) {long long loffset;char *err = "bit offset is not an integer or out of range";char *p = o->ptr;size_t plen = sdslen(p);int usehash = 0;/* Handle #<offset> form. */if (p[0] == '#' && hash && bits > 0) usehash = 1;if (string2ll(p+usehash,plen-usehash,&loffset) == 0) {addReplyError(c,err);return C_ERR;}/* Adjust the offset by 'bits' for #<offset> form. */if (usehash) loffset *= bits;/* Limit offset to server.proto_max_bulk_len (512MB in bytes by default) */if ((loffset < 0) || (loffset >> 3) >= server.proto_max_bulk_len){addReplyError(c,err);return C_ERR;}*offset = loffset;return C_OK;
}/* This helper function for BITFIELD parses a bitfield type in the form* <sign><bits> where sign is 'u' or 'i' for unsigned and signed, and* the bits is a value between 1 and 64. However 64 bits unsigned integers* are reported as an error because of current limitations of Redis protocol* to return unsigned integer values greater than INT64_MAX.** On error C_ERR is returned and an error is sent to the client. */
int getBitfieldTypeFromArgument(client *c, robj *o, int *sign, int *bits) {char *p = o->ptr;char *err = "Invalid bitfield type. Use something like i16 u8. Note that u64 is not supported but i64 is.";long long llbits;if (p[0] == 'i') {*sign = 1;} else if (p[0] == 'u') {*sign = 0;} else {addReplyError(c,err);return C_ERR;}if ((string2ll(p+1,strlen(p+1),&llbits)) == 0 ||llbits < 1 ||(*sign == 1 && llbits > 64) ||(*sign == 0 && llbits > 63)){addReplyError(c,err);return C_ERR;}*bits = llbits;return C_OK;
}

这篇关于漫话Redis源码之七十七的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/683877

相关文章

Redis在windows环境下如何启动

《Redis在windows环境下如何启动》:本文主要介绍Redis在windows环境下如何启动的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis在Windows环境下启动1.在redis的安装目录下2.输入·redis-server.exe

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

redis+lua实现分布式限流的示例

《redis+lua实现分布式限流的示例》本文主要介绍了redis+lua实现分布式限流的示例,可以实现复杂的限流逻辑,如滑动窗口限流,并且避免了多步操作导致的并发问题,具有一定的参考价值,感兴趣的可... 目录为什么使用Redis+Lua实现分布式限流使用ZSET也可以实现限流,为什么选择lua的方式实现

Redis中管道操作pipeline的实现

《Redis中管道操作pipeline的实现》RedisPipeline是一种优化客户端与服务器通信的技术,通过批量发送和接收命令减少网络往返次数,提高命令执行效率,本文就来介绍一下Redis中管道操... 目录什么是pipeline场景一:我要向Redis新增大批量的数据分批处理事务( MULTI/EXE

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Redis中的常用的五种数据类型详解

《Redis中的常用的五种数据类型详解》:本文主要介绍Redis中的常用的五种数据类型详解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis常用的五种数据类型一、字符串(String)简介常用命令应用场景二、哈希(Hash)简介常用命令应用场景三、列表(L