漫话Redis源码之七十七

2024-02-06 09:38
文章标签 源码 redis 七十七 漫话

本文主要是介绍漫话Redis源码之七十七,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里主要讲位域操作,大家要对基本的位操作有深刻的理解:

/* The following set.*Bitfield and get.*Bitfield functions implement setting* and getting arbitrary size (up to 64 bits) signed and unsigned integers* at arbitrary positions into a bitmap.** The representation considers the bitmap as having the bit number 0 to be* the most significant bit of the first byte, and so forth, so for example* setting a 5 bits unsigned integer to value 23 at offset 7 into a bitmap* previously set to all zeroes, will produce the following representation:** +--------+--------+* |00000001|01110000|* +--------+--------+** When offsets and integer sizes are aligned to bytes boundaries, this is the* same as big endian, however when such alignment does not exist, its important* to also understand how the bits inside a byte are ordered.** Note that this format follows the same convention as SETBIT and related* commands.*/void setUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, uint64_t value) {uint64_t byte, bit, byteval, bitval, j;for (j = 0; j < bits; j++) {bitval = (value & ((uint64_t)1<<(bits-1-j))) != 0;byte = offset >> 3;bit = 7 - (offset & 0x7);byteval = p[byte];byteval &= ~(1 << bit);byteval |= bitval << bit;p[byte] = byteval & 0xff;offset++;}
}void setSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, int64_t value) {uint64_t uv = value; /* Casting will add UINT64_MAX + 1 if v is negative. */setUnsignedBitfield(p,offset,bits,uv);
}uint64_t getUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {uint64_t byte, bit, byteval, bitval, j, value = 0;for (j = 0; j < bits; j++) {byte = offset >> 3;bit = 7 - (offset & 0x7);byteval = p[byte];bitval = (byteval >> bit) & 1;value = (value<<1) | bitval;offset++;}return value;
}int64_t getSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {int64_t value;union {uint64_t u; int64_t i;} conv;/* Converting from unsigned to signed is undefined when the value does* not fit, however here we assume two's complement and the original value* was obtained from signed -> unsigned conversion, so we'll find the* most significant bit set if the original value was negative.** Note that two's complement is mandatory for exact-width types* according to the C99 standard. */conv.u = getUnsignedBitfield(p,offset,bits);value = conv.i;/* If the top significant bit is 1, propagate it to all the* higher bits for two's complement representation of signed* integers. */if (bits < 64 && (value & ((uint64_t)1 << (bits-1))))value |= ((uint64_t)-1) << bits;return value;
}/* The following two functions detect overflow of a value in the context* of storing it as an unsigned or signed integer with the specified* number of bits. The functions both take the value and a possible increment.* If no overflow could happen and the value+increment fit inside the limits,* then zero is returned, otherwise in case of overflow, 1 is returned,* otherwise in case of underflow, -1 is returned.** When non-zero is returned (overflow or underflow), if not NULL, *limit is* set to the value the operation should result when an overflow happens,* depending on the specified overflow semantics:** For BFOVERFLOW_SAT if 1 is returned, *limit it is set maximum value that* you can store in that integer. when -1 is returned, *limit is set to the* minimum value that an integer of that size can represent.** For BFOVERFLOW_WRAP *limit is set by performing the operation in order to* "wrap" around towards zero for unsigned integers, or towards the most* negative number that is possible to represent for signed integers. */#define BFOVERFLOW_WRAP 0
#define BFOVERFLOW_SAT 1
#define BFOVERFLOW_FAIL 2 /* Used by the BITFIELD command implementation. */int checkUnsignedBitfieldOverflow(uint64_t value, int64_t incr, uint64_t bits, int owtype, uint64_t *limit) {uint64_t max = (bits == 64) ? UINT64_MAX : (((uint64_t)1<<bits)-1);int64_t maxincr = max-value;int64_t minincr = -value;if (value > max || (incr > 0 && incr > maxincr)) {if (limit) {if (owtype == BFOVERFLOW_WRAP) {goto handle_wrap;} else if (owtype == BFOVERFLOW_SAT) {*limit = max;}}return 1;} else if (incr < 0 && incr < minincr) {if (limit) {if (owtype == BFOVERFLOW_WRAP) {goto handle_wrap;} else if (owtype == BFOVERFLOW_SAT) {*limit = 0;}}return -1;}return 0;handle_wrap:{uint64_t mask = ((uint64_t)-1) << bits;uint64_t res = value+incr;res &= ~mask;*limit = res;}return 1;
}int checkSignedBitfieldOverflow(int64_t value, int64_t incr, uint64_t bits, int owtype, int64_t *limit) {int64_t max = (bits == 64) ? INT64_MAX : (((int64_t)1<<(bits-1))-1);int64_t min = (-max)-1;/* Note that maxincr and minincr could overflow, but we use the values* only after checking 'value' range, so when we use it no overflow* happens. */int64_t maxincr = max-value;int64_t minincr = min-value;if (value > max || (bits != 64 && incr > maxincr) || (value >= 0 && incr > 0 && incr > maxincr)){if (limit) {if (owtype == BFOVERFLOW_WRAP) {goto handle_wrap;} else if (owtype == BFOVERFLOW_SAT) {*limit = max;}}return 1;} else if (value < min || (bits != 64 && incr < minincr) || (value < 0 && incr < 0 && incr < minincr)) {if (limit) {if (owtype == BFOVERFLOW_WRAP) {goto handle_wrap;} else if (owtype == BFOVERFLOW_SAT) {*limit = min;}}return -1;}return 0;handle_wrap:{uint64_t msb = (uint64_t)1 << (bits-1);uint64_t a = value, b = incr, c;c = a+b; /* Perform addition as unsigned so that's defined. *//* If the sign bit is set, propagate to all the higher order* bits, to cap the negative value. If it's clear, mask to* the positive integer limit. */if (bits < 64) {uint64_t mask = ((uint64_t)-1) << bits;if (c & msb) {c |= mask;} else {c &= ~mask;}}*limit = c;}return 1;
}/* Debugging function. Just show bits in the specified bitmap. Not used* but here for not having to rewrite it when debugging is needed. */
void printBits(unsigned char *p, unsigned long count) {unsigned long j, i, byte;for (j = 0; j < count; j++) {byte = p[j];for (i = 0x80; i > 0; i /= 2)printf("%c", (byte & i) ? '1' : '0');printf("|");}printf("\n");
}/* -----------------------------------------------------------------------------* Bits related string commands: GETBIT, SETBIT, BITCOUNT, BITOP.* -------------------------------------------------------------------------- */#define BITOP_AND   0
#define BITOP_OR    1
#define BITOP_XOR   2
#define BITOP_NOT   3#define BITFIELDOP_GET 0
#define BITFIELDOP_SET 1
#define BITFIELDOP_INCRBY 2/* This helper function used by GETBIT / SETBIT parses the bit offset argument* making sure an error is returned if it is negative or if it overflows* Redis 512 MB limit for the string value or more (server.proto_max_bulk_len).** If the 'hash' argument is true, and 'bits is positive, then the command* will also parse bit offsets prefixed by "#". In such a case the offset* is multiplied by 'bits'. This is useful for the BITFIELD command. */
int getBitOffsetFromArgument(client *c, robj *o, uint64_t *offset, int hash, int bits) {long long loffset;char *err = "bit offset is not an integer or out of range";char *p = o->ptr;size_t plen = sdslen(p);int usehash = 0;/* Handle #<offset> form. */if (p[0] == '#' && hash && bits > 0) usehash = 1;if (string2ll(p+usehash,plen-usehash,&loffset) == 0) {addReplyError(c,err);return C_ERR;}/* Adjust the offset by 'bits' for #<offset> form. */if (usehash) loffset *= bits;/* Limit offset to server.proto_max_bulk_len (512MB in bytes by default) */if ((loffset < 0) || (loffset >> 3) >= server.proto_max_bulk_len){addReplyError(c,err);return C_ERR;}*offset = loffset;return C_OK;
}/* This helper function for BITFIELD parses a bitfield type in the form* <sign><bits> where sign is 'u' or 'i' for unsigned and signed, and* the bits is a value between 1 and 64. However 64 bits unsigned integers* are reported as an error because of current limitations of Redis protocol* to return unsigned integer values greater than INT64_MAX.** On error C_ERR is returned and an error is sent to the client. */
int getBitfieldTypeFromArgument(client *c, robj *o, int *sign, int *bits) {char *p = o->ptr;char *err = "Invalid bitfield type. Use something like i16 u8. Note that u64 is not supported but i64 is.";long long llbits;if (p[0] == 'i') {*sign = 1;} else if (p[0] == 'u') {*sign = 0;} else {addReplyError(c,err);return C_ERR;}if ((string2ll(p+1,strlen(p+1),&llbits)) == 0 ||llbits < 1 ||(*sign == 1 && llbits > 64) ||(*sign == 0 && llbits > 63)){addReplyError(c,err);return C_ERR;}*bits = llbits;return C_OK;
}

这篇关于漫话Redis源码之七十七的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/683877

相关文章

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

Redis存储的列表分页和检索的实现方法

《Redis存储的列表分页和检索的实现方法》在Redis中,列表(List)是一种有序的数据结构,通常用于存储一系列元素,由于列表是有序的,可以通过索引来访问元素,因此可以很方便地实现分页和检索功能,... 目录一、Redis 列表的基本操作二、分页实现三、检索实现3.1 方法 1:客户端过滤3.2 方法

Python中操作Redis的常用方法小结

《Python中操作Redis的常用方法小结》这篇文章主要为大家详细介绍了Python中操作Redis的常用方法,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解一下... 目录安装Redis开启、关闭Redisredis数据结构redis-cli操作安装redis-py数据库连接和释放增

redis防止短信恶意调用的实现

《redis防止短信恶意调用的实现》本文主要介绍了在场景登录或注册接口中使用短信验证码时遇到的恶意调用问题,并通过使用Redis分布式锁来解决,具有一定的参考价值,感兴趣的可以了解一下... 目录1.场景2.排查3.解决方案3.1 Redis锁实现3.2 方法调用1.场景登录或注册接口中,使用短信验证码场

Redis 多规则限流和防重复提交方案实现小结

《Redis多规则限流和防重复提交方案实现小结》本文主要介绍了Redis多规则限流和防重复提交方案实现小结,包括使用String结构和Zset结构来记录用户IP的访问次数,具有一定的参考价值,感兴趣... 目录一:使用 String 结构记录固定时间段内某用户 IP 访问某接口的次数二:使用 Zset 进行

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Redis如何使用zset处理排行榜和计数问题

《Redis如何使用zset处理排行榜和计数问题》Redis的ZSET数据结构非常适合处理排行榜和计数问题,它可以在高并发的点赞业务中高效地管理点赞的排名,并且由于ZSET的排序特性,可以轻松实现根据... 目录Redis使用zset处理排行榜和计数业务逻辑ZSET 数据结构优化高并发的点赞操作ZSET 结

Redis的Zset类型及相关命令详细讲解

《Redis的Zset类型及相关命令详细讲解》:本文主要介绍Redis的Zset类型及相关命令的相关资料,有序集合Zset是一种Redis数据结构,它类似于集合Set,但每个元素都有一个关联的分数... 目录Zset简介ZADDZCARDZCOUNTZRANGEZREVRANGEZRANGEBYSCOREZ

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操