数组题目:最佳观光组合

2024-02-06 07:18

本文主要是介绍数组题目:最佳观光组合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 题目
    • 标题和出处
    • 难度
    • 题目描述
      • 要求
      • 示例
      • 数据范围
  • 解法
    • 思路和算法
    • 代码
    • 复杂度分析

题目

标题和出处

标题:最佳观光组合

出处:1014. 最佳观光组合

难度

4 级

题目描述

要求

给定正整数数组 values \texttt{values} values values[i] \texttt{values[i]} values[i] 表示第 i \texttt{i} i 个观光景点的评分,并且两个景点 i \texttt{i} i j \texttt{j} j 之间的距离为 j - i \texttt{j - i} j - i

一对景点( i < j \texttt{i < j} i < j)组成的观光组合的得分为 values[i] + values[j] + i - j \texttt{values[i] + values[j] + i - j} values[i] + values[j] + i - j:景点的评分之和减去它们两者之间的距离。

返回一对观光景点能取得的最高分。

示例

示例 1:

输入: values = [8,1,5,2,6] \texttt{values = [8,1,5,2,6]} values = [8,1,5,2,6]
输出: 11 \texttt{11} 11
解释: i = 0, j = 2, values[i] + values[j] + i - j = 8 + 5 + 0 - 2 = 11 \texttt{i = 0, j = 2, values[i] + values[j] + i - j = 8 + 5 + 0 - 2 = 11} i = 0, j = 2, values[i] + values[j] + i - j = 8 + 5 + 0 - 2 = 11

示例 2:

输入: values = [1,2] \texttt{values = [1,2]} values = [1,2]
输出: 2 \texttt{2} 2

数据范围

  • 2 ≤ values.length ≤ 5 × 10 4 \texttt{2} \le \texttt{values.length} \le \texttt{5} \times \texttt{10}^\texttt{4} 2values.length5×104
  • 1 ≤ values[i] ≤ 1000 \texttt{1} \le \texttt{values[i]} \le \texttt{1000} 1values[i]1000

解法

思路和算法

假设数组 values \textit{values} values 的长度是 n n n。最直观的做法是遍历每一对下标 ( i , j ) (i,j) (i,j),其中 0 ≤ i < j < n 0 \le i<j<n 0i<j<n,计算观光组合得分,时间复杂度是 O ( n 2 ) O(n^2) O(n2),会超出时间限制,因此必须优化。

i < j i<j i<j 时,将景点对 ( i , j ) (i,j) (i,j) 组成的观光组合的得分记为 f ( i , j ) f(i,j) f(i,j),则有:

f ( i , j ) = values [ i ] + values [ j ] + i − j f(i,j)=\textit{values}[i] + \textit{values}[j] + i - j f(i,j)=values[i]+values[j]+ij

是否可以优化 f ( i , j ) f(i,j) f(i,j) 的计算呢?注意到 f ( i , j ) f(i,j) f(i,j) 可以写成如下形式:

f ( i , j ) = values [ i ] + i + values [ j ] − j ( i < j ) f(i,j)=\textit{values}[i] + i + \textit{values}[j] - j (i<j) f(i,j)=values[i]+i+values[j]j(i<j)

g ( i ) = values [ i ] + i g(i)=\textit{values}[i] + i g(i)=values[i]+i h ( j ) = values [ j ] − j h(j)=\textit{values}[j] - j h(j)=values[j]j,则有:

f ( i , j ) = g ( i ) + h ( j ) ( i < j ) f(i,j)=g(i)+h(j) (i<j) f(i,j)=g(i)+h(j)(i<j)

由此可以想到优化的做法:遍历数组 values \textit{values} values,遍历过程中维护最大的 g g g 的值,根据最大的 g g g 的值和当前的 h ( j ) h(j) h(j) 的值计算观光组合的最高得分。

具体实现方面,维护 leftMax \textit{leftMax} leftMax 为最大的 g g g 的值,初始时 leftMax = values [ 0 ] + 0 = values [ 0 ] \textit{leftMax}=\textit{values}[0]+0=\textit{values}[0] leftMax=values[0]+0=values[0]。从左到右遍历数组 values \textit{values} values,对于 1 ≤ i < n 1 \le i<n 1i<n,计算 h ( i ) h(i) h(i) 的值,使用 leftMax + h ( i ) \textit{leftMax}+h(i) leftMax+h(i) 更新观光组合的最高得分,然后用 g ( i ) g(i) g(i) 更新 leftMax \textit{leftMax} leftMax 的值。

上述两步操作的顺序不能颠倒,必须先更新观光组合的最高得分,后更新 leftMax \textit{leftMax} leftMax 的值,因为观光组合必须是两个不同的景点的组合。

代码

class Solution {public int maxScoreSightseeingPair(int[] values) {int maxScore = 0;int leftMax = values[0];int length = values.length;for (int i = 1; i < length; i++) {int right = values[i] - i;maxScore = Math.max(maxScore, leftMax + right);leftMax = Math.max(leftMax, values[i] + i);}return maxScore;}
}

复杂度分析

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 values \textit{values} values 的长度。需要遍历数组 values \textit{values} values 一次,对每个下标位置计算最大评分之和的时间复杂度是 O ( 1 ) O(1) O(1),因此总时间复杂度是 O ( n ) O(n) O(n)

  • 空间复杂度: O ( 1 ) O(1) O(1)

这篇关于数组题目:最佳观光组合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/683541

相关文章

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

C++原地删除有序数组重复项的N种方法

《C++原地删除有序数组重复项的N种方法》给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度,不要使用额外的数组空间,你必须在原地修改输入数组并在使用O(... 目录一、问题二、问题分析三、算法实现四、问题变体:最多保留两次五、分析和代码实现5.1、问题分析5.

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定

Java中数组转换为列表的两种实现方式(超简单)

《Java中数组转换为列表的两种实现方式(超简单)》本文介绍了在Java中将数组转换为列表的两种常见方法使用Arrays.asList和Java8的StreamAPI,Arrays.asList方法简... 目录1. 使用Java Collections框架(Arrays.asList)1.1 示例代码1.

C++一个数组赋值给另一个数组方式

《C++一个数组赋值给另一个数组方式》文章介绍了三种在C++中将一个数组赋值给另一个数组的方法:使用循环逐个元素赋值、使用标准库函数std::copy或std::memcpy以及使用标准库容器,每种方... 目录C++一个数组赋值给另一个数组循环遍历赋值使用标准库中的函数 std::copy 或 std::

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

SpringBoot项目中Maven剔除无用Jar引用的最佳实践

《SpringBoot项目中Maven剔除无用Jar引用的最佳实践》在SpringBoot项目开发中,Maven是最常用的构建工具之一,通过Maven,我们可以轻松地管理项目所需的依赖,而,... 目录1、引言2、Maven 依赖管理的基础概念2.1 什么是 Maven 依赖2.2 Maven 的依赖传递机

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J