PyTorch Geometric MPNN学习笔记(实现向)

2024-02-05 10:38

本文主要是介绍PyTorch Geometric MPNN学习笔记(实现向),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

建立消息传递网络MPNN

本文主要从实现层面讲解代码。

在Graph中,如果将卷积这一操作推广到其他域中时,往往用邻域聚合或消息传递来表示。
接下来有定义几个Notation:
x i ( k ) \textbf{x}_i^{(k)} xi(k)表示第 k k k次迭代的节点 i i i的节点特征;
e j , i \textbf{e}_{j,i} ej,i表示从节点 j j j到节点 i i i的(可选的)边缘特征;
i i i被约定为单向边的目的节点; j j j被约定为单向边的源节点;
N ( i ) \mathcal{N}(i) N(i)表示节点 i i i的邻居节点(即,与 i i i有直接连边的节点);
简单来讲,这个GNN模型可以被表征为:
x i ( k ) = γ ( k ) ( x i ( k − 1 ) , j ∈ N ( i ) ϕ ( x i ( k − 1 ) , x j ( k − 1 ) , e j , i ) ) \textbf{x}_i^{(k)}=\gamma^{(k)}(\textbf{x}_i^{(k-1)},\boxed{}_{j \in \mathcal{N}(i)}\phi(\textbf{x}_i^{(k-1)},\textbf{x}_j^{(k-1)},\textbf{e}_{j,i})) xi(k)=γ(k)(xi(k1),jN(i)ϕ(xi(k1),xj(k1),ej,i))
其中, \boxed{} (方框操作)是代表了一种可导的(differentiable)且置换不变的(permutation)函数,在Pytorch Geometric中,提供了sum,mean,max三种操作,接下来这种“方框操作”将被称为“聚合函数”。
γ \gamma γ ϕ \phi ϕ是两种不同的可导函数,以此来进行所谓的“特征提取”,常见的比如简单的MLP。

Message Passing基类

在PyTorch Geometric中,提供了Message Passing(MP)基类来帮助我们构建MPNN,官方文档给出了一个很好的范例:

import torch
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degreeclass GCNConv(MessagePassing):def __init__(self, in_channels, out_channels):super(GCNConv, self).__init__(aggr='add')  # "Add" aggregation (Step 5).self.lin = torch.nn.Linear(in_channels, out_channels)def forward(self, x, edge_index):# x has shape [N, in_channels]# edge_index has shape [2, E]# Step 1: Add self-loops to the adjacency matrix.edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))# Step 2: Linearly transform node feature matrix.x = self.lin(x)# Step 3: Compute normalization.row, col = edge_indexdeg = degree(col, x.size(0), dtype=x.dtype)deg_inv_sqrt = deg.pow(-0.5)deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]# Step 4-5: Start propagating messages.return self.propagate(edge_index, x=x, norm=norm)def message(self, x_j, norm):# x_j has shape [E, out_channels]# Step 4: Normalize node features.return norm.view(-1, 1) * x_j

为了方便,我们一部分一部分的来看。

init
    def __init__(self, in_channels, out_channels):super(GCNConv, self).__init__(aggr='add')  # "Add" aggregation (Step 5).self.lin = torch.nn.Linear(in_channels, out_channels)

利用MP基类,我们建立属于自己的类GCNConv,并对其进行初始化操作,包括设置参数,而MP基类中可被用户修改定义的参数包括:
MessagePassing(aggr=“add”, flow=“source_to_target”, node_dim=-2)
聚合函数(“add”, “mean” or “max”);默认add,也是最常用的。
信息传递方向(“source_to_target” or “target_to_source”).;默认前一个。
node_dim个人认为不太用,如需要可参考[1]。
此外,在这里也可以定义我们需要的其它库函数,例如线性函数、MLP、GRU等等。

forward
    def forward(self, x, edge_index):# x has shape [N, in_channels]# edge_index has shape [2, E]# Step 1: Add self-loops to the adjacency matrix.edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))# Step 2: Linearly transform node feature matrix.x = self.lin(x)# Step 3: Compute normalization.row, col = edge_indexdeg = degree(col, x.size(0), dtype=x.dtype)deg_inv_sqrt = deg.pow(-0.5)deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]# Step 4-5: Start propagating messages.return self.propagate(edge_index, x=x, norm=norm)

我们对消息传递的主要操作就在这个forward中进行啦。
这里给了几个基本操作,但不一定会用到。包括加自环、线性变换、根据度来计算归一化等。
为了便于理解,我们就把forward实现的公式放在这里,有兴趣的可以自行理解:
x i ( k ) = ∑ j ∈ N ( i ) ∪ { i } 1 deg ⁡ ( i ) ⋅ deg ⁡ ( j ) ⋅ ( Θ ⋅ x j ( k − 1 ) ) , \mathbf{x}_i^{(k)} = \sum_{j \in \mathcal{N}(i) \cup \{ i \}} \frac{1}{\sqrt{\deg(i)} \cdot \sqrt{\deg(j)}} \cdot \left( \mathbf{\Theta} \cdot \mathbf{x}_j^{(k-1)} \right), xi(k)=jN(i){i}deg(i) deg(j) 1(Θxj(k1)),

propagate

那么MP类中最重要的内容其实就是它的propagate函数了,如果这个函数被调用,那么MP类会隐式的调用如下三个函数:message(), aggregate(), update()。

aggregate()基本上就是我们在init部分规定好的参数了;
message()主要实现一开始的公式中的 ϕ \phi ϕ这一部分;
update()实现了 γ \gamma γ部分。

如果在类中不显式的说明这三个函数,那么就是直接输入即输出。因此我们一般都是要至少修改其中一个函数的。在修改的过程中,所有的包含“源和目的节点”这两个属性的变量都可以很方便的表达,比如 x x x是表示特征的变量,那么调用 x j x_j xj就是所有的源节点的特征, x i x_i xi就是所有目的节点的特征。

调用类
conv = GCNConv(16, 32)
x = conv(x, edge_index)

这里调用的时候需要说明一下,输入参数表是跟着MP类所属forward()函数需要的参数列表来的。这里,edge_index和特征x的确定,可根据[2]中的讲解来进行。

Reference

[1] https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html#the-messagepassing-base-class
[2] https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html

这篇关于PyTorch Geometric MPNN学习笔记(实现向)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680652

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一