PyTorch Geometric MPNN学习笔记(实现向)

2024-02-05 10:38

本文主要是介绍PyTorch Geometric MPNN学习笔记(实现向),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

建立消息传递网络MPNN

本文主要从实现层面讲解代码。

在Graph中,如果将卷积这一操作推广到其他域中时,往往用邻域聚合或消息传递来表示。
接下来有定义几个Notation:
x i ( k ) \textbf{x}_i^{(k)} xi(k)表示第 k k k次迭代的节点 i i i的节点特征;
e j , i \textbf{e}_{j,i} ej,i表示从节点 j j j到节点 i i i的(可选的)边缘特征;
i i i被约定为单向边的目的节点; j j j被约定为单向边的源节点;
N ( i ) \mathcal{N}(i) N(i)表示节点 i i i的邻居节点(即,与 i i i有直接连边的节点);
简单来讲,这个GNN模型可以被表征为:
x i ( k ) = γ ( k ) ( x i ( k − 1 ) , j ∈ N ( i ) ϕ ( x i ( k − 1 ) , x j ( k − 1 ) , e j , i ) ) \textbf{x}_i^{(k)}=\gamma^{(k)}(\textbf{x}_i^{(k-1)},\boxed{}_{j \in \mathcal{N}(i)}\phi(\textbf{x}_i^{(k-1)},\textbf{x}_j^{(k-1)},\textbf{e}_{j,i})) xi(k)=γ(k)(xi(k1),jN(i)ϕ(xi(k1),xj(k1),ej,i))
其中, \boxed{} (方框操作)是代表了一种可导的(differentiable)且置换不变的(permutation)函数,在Pytorch Geometric中,提供了sum,mean,max三种操作,接下来这种“方框操作”将被称为“聚合函数”。
γ \gamma γ ϕ \phi ϕ是两种不同的可导函数,以此来进行所谓的“特征提取”,常见的比如简单的MLP。

Message Passing基类

在PyTorch Geometric中,提供了Message Passing(MP)基类来帮助我们构建MPNN,官方文档给出了一个很好的范例:

import torch
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degreeclass GCNConv(MessagePassing):def __init__(self, in_channels, out_channels):super(GCNConv, self).__init__(aggr='add')  # "Add" aggregation (Step 5).self.lin = torch.nn.Linear(in_channels, out_channels)def forward(self, x, edge_index):# x has shape [N, in_channels]# edge_index has shape [2, E]# Step 1: Add self-loops to the adjacency matrix.edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))# Step 2: Linearly transform node feature matrix.x = self.lin(x)# Step 3: Compute normalization.row, col = edge_indexdeg = degree(col, x.size(0), dtype=x.dtype)deg_inv_sqrt = deg.pow(-0.5)deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]# Step 4-5: Start propagating messages.return self.propagate(edge_index, x=x, norm=norm)def message(self, x_j, norm):# x_j has shape [E, out_channels]# Step 4: Normalize node features.return norm.view(-1, 1) * x_j

为了方便,我们一部分一部分的来看。

init
    def __init__(self, in_channels, out_channels):super(GCNConv, self).__init__(aggr='add')  # "Add" aggregation (Step 5).self.lin = torch.nn.Linear(in_channels, out_channels)

利用MP基类,我们建立属于自己的类GCNConv,并对其进行初始化操作,包括设置参数,而MP基类中可被用户修改定义的参数包括:
MessagePassing(aggr=“add”, flow=“source_to_target”, node_dim=-2)
聚合函数(“add”, “mean” or “max”);默认add,也是最常用的。
信息传递方向(“source_to_target” or “target_to_source”).;默认前一个。
node_dim个人认为不太用,如需要可参考[1]。
此外,在这里也可以定义我们需要的其它库函数,例如线性函数、MLP、GRU等等。

forward
    def forward(self, x, edge_index):# x has shape [N, in_channels]# edge_index has shape [2, E]# Step 1: Add self-loops to the adjacency matrix.edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))# Step 2: Linearly transform node feature matrix.x = self.lin(x)# Step 3: Compute normalization.row, col = edge_indexdeg = degree(col, x.size(0), dtype=x.dtype)deg_inv_sqrt = deg.pow(-0.5)deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]# Step 4-5: Start propagating messages.return self.propagate(edge_index, x=x, norm=norm)

我们对消息传递的主要操作就在这个forward中进行啦。
这里给了几个基本操作,但不一定会用到。包括加自环、线性变换、根据度来计算归一化等。
为了便于理解,我们就把forward实现的公式放在这里,有兴趣的可以自行理解:
x i ( k ) = ∑ j ∈ N ( i ) ∪ { i } 1 deg ⁡ ( i ) ⋅ deg ⁡ ( j ) ⋅ ( Θ ⋅ x j ( k − 1 ) ) , \mathbf{x}_i^{(k)} = \sum_{j \in \mathcal{N}(i) \cup \{ i \}} \frac{1}{\sqrt{\deg(i)} \cdot \sqrt{\deg(j)}} \cdot \left( \mathbf{\Theta} \cdot \mathbf{x}_j^{(k-1)} \right), xi(k)=jN(i){i}deg(i) deg(j) 1(Θxj(k1)),

propagate

那么MP类中最重要的内容其实就是它的propagate函数了,如果这个函数被调用,那么MP类会隐式的调用如下三个函数:message(), aggregate(), update()。

aggregate()基本上就是我们在init部分规定好的参数了;
message()主要实现一开始的公式中的 ϕ \phi ϕ这一部分;
update()实现了 γ \gamma γ部分。

如果在类中不显式的说明这三个函数,那么就是直接输入即输出。因此我们一般都是要至少修改其中一个函数的。在修改的过程中,所有的包含“源和目的节点”这两个属性的变量都可以很方便的表达,比如 x x x是表示特征的变量,那么调用 x j x_j xj就是所有的源节点的特征, x i x_i xi就是所有目的节点的特征。

调用类
conv = GCNConv(16, 32)
x = conv(x, edge_index)

这里调用的时候需要说明一下,输入参数表是跟着MP类所属forward()函数需要的参数列表来的。这里,edge_index和特征x的确定,可根据[2]中的讲解来进行。

Reference

[1] https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html#the-messagepassing-base-class
[2] https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html

这篇关于PyTorch Geometric MPNN学习笔记(实现向)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680652

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2