PyTorch Geometric MPNN学习笔记(实现向)

2024-02-05 10:38

本文主要是介绍PyTorch Geometric MPNN学习笔记(实现向),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

建立消息传递网络MPNN

本文主要从实现层面讲解代码。

在Graph中,如果将卷积这一操作推广到其他域中时,往往用邻域聚合或消息传递来表示。
接下来有定义几个Notation:
x i ( k ) \textbf{x}_i^{(k)} xi(k)表示第 k k k次迭代的节点 i i i的节点特征;
e j , i \textbf{e}_{j,i} ej,i表示从节点 j j j到节点 i i i的(可选的)边缘特征;
i i i被约定为单向边的目的节点; j j j被约定为单向边的源节点;
N ( i ) \mathcal{N}(i) N(i)表示节点 i i i的邻居节点(即,与 i i i有直接连边的节点);
简单来讲,这个GNN模型可以被表征为:
x i ( k ) = γ ( k ) ( x i ( k − 1 ) , j ∈ N ( i ) ϕ ( x i ( k − 1 ) , x j ( k − 1 ) , e j , i ) ) \textbf{x}_i^{(k)}=\gamma^{(k)}(\textbf{x}_i^{(k-1)},\boxed{}_{j \in \mathcal{N}(i)}\phi(\textbf{x}_i^{(k-1)},\textbf{x}_j^{(k-1)},\textbf{e}_{j,i})) xi(k)=γ(k)(xi(k1),jN(i)ϕ(xi(k1),xj(k1),ej,i))
其中, \boxed{} (方框操作)是代表了一种可导的(differentiable)且置换不变的(permutation)函数,在Pytorch Geometric中,提供了sum,mean,max三种操作,接下来这种“方框操作”将被称为“聚合函数”。
γ \gamma γ ϕ \phi ϕ是两种不同的可导函数,以此来进行所谓的“特征提取”,常见的比如简单的MLP。

Message Passing基类

在PyTorch Geometric中,提供了Message Passing(MP)基类来帮助我们构建MPNN,官方文档给出了一个很好的范例:

import torch
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degreeclass GCNConv(MessagePassing):def __init__(self, in_channels, out_channels):super(GCNConv, self).__init__(aggr='add')  # "Add" aggregation (Step 5).self.lin = torch.nn.Linear(in_channels, out_channels)def forward(self, x, edge_index):# x has shape [N, in_channels]# edge_index has shape [2, E]# Step 1: Add self-loops to the adjacency matrix.edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))# Step 2: Linearly transform node feature matrix.x = self.lin(x)# Step 3: Compute normalization.row, col = edge_indexdeg = degree(col, x.size(0), dtype=x.dtype)deg_inv_sqrt = deg.pow(-0.5)deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]# Step 4-5: Start propagating messages.return self.propagate(edge_index, x=x, norm=norm)def message(self, x_j, norm):# x_j has shape [E, out_channels]# Step 4: Normalize node features.return norm.view(-1, 1) * x_j

为了方便,我们一部分一部分的来看。

init
    def __init__(self, in_channels, out_channels):super(GCNConv, self).__init__(aggr='add')  # "Add" aggregation (Step 5).self.lin = torch.nn.Linear(in_channels, out_channels)

利用MP基类,我们建立属于自己的类GCNConv,并对其进行初始化操作,包括设置参数,而MP基类中可被用户修改定义的参数包括:
MessagePassing(aggr=“add”, flow=“source_to_target”, node_dim=-2)
聚合函数(“add”, “mean” or “max”);默认add,也是最常用的。
信息传递方向(“source_to_target” or “target_to_source”).;默认前一个。
node_dim个人认为不太用,如需要可参考[1]。
此外,在这里也可以定义我们需要的其它库函数,例如线性函数、MLP、GRU等等。

forward
    def forward(self, x, edge_index):# x has shape [N, in_channels]# edge_index has shape [2, E]# Step 1: Add self-loops to the adjacency matrix.edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))# Step 2: Linearly transform node feature matrix.x = self.lin(x)# Step 3: Compute normalization.row, col = edge_indexdeg = degree(col, x.size(0), dtype=x.dtype)deg_inv_sqrt = deg.pow(-0.5)deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]# Step 4-5: Start propagating messages.return self.propagate(edge_index, x=x, norm=norm)

我们对消息传递的主要操作就在这个forward中进行啦。
这里给了几个基本操作,但不一定会用到。包括加自环、线性变换、根据度来计算归一化等。
为了便于理解,我们就把forward实现的公式放在这里,有兴趣的可以自行理解:
x i ( k ) = ∑ j ∈ N ( i ) ∪ { i } 1 deg ⁡ ( i ) ⋅ deg ⁡ ( j ) ⋅ ( Θ ⋅ x j ( k − 1 ) ) , \mathbf{x}_i^{(k)} = \sum_{j \in \mathcal{N}(i) \cup \{ i \}} \frac{1}{\sqrt{\deg(i)} \cdot \sqrt{\deg(j)}} \cdot \left( \mathbf{\Theta} \cdot \mathbf{x}_j^{(k-1)} \right), xi(k)=jN(i){i}deg(i) deg(j) 1(Θxj(k1)),

propagate

那么MP类中最重要的内容其实就是它的propagate函数了,如果这个函数被调用,那么MP类会隐式的调用如下三个函数:message(), aggregate(), update()。

aggregate()基本上就是我们在init部分规定好的参数了;
message()主要实现一开始的公式中的 ϕ \phi ϕ这一部分;
update()实现了 γ \gamma γ部分。

如果在类中不显式的说明这三个函数,那么就是直接输入即输出。因此我们一般都是要至少修改其中一个函数的。在修改的过程中,所有的包含“源和目的节点”这两个属性的变量都可以很方便的表达,比如 x x x是表示特征的变量,那么调用 x j x_j xj就是所有的源节点的特征, x i x_i xi就是所有目的节点的特征。

调用类
conv = GCNConv(16, 32)
x = conv(x, edge_index)

这里调用的时候需要说明一下,输入参数表是跟着MP类所属forward()函数需要的参数列表来的。这里,edge_index和特征x的确定,可根据[2]中的讲解来进行。

Reference

[1] https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html#the-messagepassing-base-class
[2] https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html

这篇关于PyTorch Geometric MPNN学习笔记(实现向)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680652

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求