BZOJ1101:[POI2007]Zap——反演模板

2024-02-04 11:58

本文主要是介绍BZOJ1101:[POI2007]Zap——反演模板,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Description

  FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。

Input

  第一行包含一个正整数n,表示一共有n组询问。(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d。(1<=d<=a,b<=50000)

Output

  对于每组询问,输出到输出文件zap.out一个正整数,表示满足条件的整数对数。

Sample Input

2

4 5 2

6 4 3
Sample Output

3

2

//对于第一组询问,满足条件的整数对有(2,2),(2,4),(4,2)。对于第二组询问,满足条件的整数对有(

6,3),(3,3)。


没什么好说的,就是非常裸的莫比乌斯反演,推导过程可以参考我写的这篇文章,完全是一模一样的,只不过不比那道题更简单一些。
#include<bits/stdc++.h>
#define MAXN 50000
using namespace std;
int read(){char c;int x;while(c=getchar(),c<'0'||c>'9');x=c-'0';while(c=getchar(),c>='0'&&c<='9') x=x*10+c-'0';return x;
}
void print(int x){if(x/10) print(x/10);putchar(x%10+'0');
}
int top,T,a,b,k,mu[MAXN+5],sum[MAXN+5],pri[MAXN+5],vis[MAXN+5];
int calc(){int l=1,r=0,res=0;a=a/k;b=b/k;while(l<=a){r=min(a/(a/l),b/(b/l));r=min(r,a);res+=(sum[r]-sum[l-1])*(a/l)*(b/l);l=r+1;}return res;
}
int main()
{T=read();mu[1]=sum[1]=1;for(int i=2;i<=MAXN;i++){if(!vis[i]) pri[++top]=i,mu[i]=-1;for(int j=1;j<=top&&pri[j]*i<=MAXN;j++){vis[pri[j]*i]=1;if(i%pri[j]==0) break;mu[i*pri[j]]=-mu[i];}sum[i]=sum[i-1]+mu[i];}while(T--){a=read();b=read();k=read();if(a>b) swap(a,b);print(calc());puts("");}return 0;
}

这篇关于BZOJ1101:[POI2007]Zap——反演模板的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/677407

相关文章

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

poj 2104 and hdu 2665 划分树模板入门题

题意: 给一个数组n(1e5)个数,给一个范围(fr, to, k),求这个范围中第k大的数。 解析: 划分树入门。 bing神的模板。 坑爹的地方是把-l 看成了-1........ 一直re。 代码: poj 2104: #include <iostream>#include <cstdio>#include <cstdlib>#include <al

最大流、 最小费用最大流终极版模板

最大流  const int inf = 1000000000 ;const int maxn = 20000 , maxm = 500000 ;struct Edge{int v , f ,next ;Edge(){}Edge(int _v , int _f , int _next):v(_v) ,f(_f),next(_next){}};int sourse , mee

hdu6053 TrickGCD 莫比乌斯反演

TrickGCD Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Problem Description You are given an array  A  , and Zhu wants to know there are how many d

C++语法知识点合集:11.模板

文章目录 一、非类型模板参数1.非类型模板参数的基本形式2.指针作为非类型模板参数3.引用作为非类型模板参数4.非类型模板参数的限制和陷阱:5.几个问题 二、模板的特化1.概念2.函数模板特化3.类模板特化(1)全特化(2)偏特化(3)类模板特化应用示例 三、模板分离编译1.概念2.模板的分离编译 模版总结 一、非类型模板参数 模板参数分类类型形参与非类型形参 非类型模板

Smarty模板引擎工作机制(一)

深入浅出Smarty模板引擎工作机制,我们将对比使用smarty模板引擎和没使用smarty模板引擎的两种开发方式的区别,并动手开发一个自己的模板引擎,以便加深对smarty模板引擎工作机制的理解。 在没有使用Smarty模板引擎的情况下,我们都是将PHP程序和网页模板合在一起编辑的,好比下面的源代码: <?php$title="深处浅出之Smarty模板引擎工作机制";$content=