国内也有不错的开源项目,只是感觉后劲不足,亟须自然科学基金赞助

本文主要是介绍国内也有不错的开源项目,只是感觉后劲不足,亟须自然科学基金赞助,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://cs.cug.edu.cn/teacherweb/lichanghe/pages/EAlib.html大笑


如果上面的服务器下载EAlib源代码有问题,可以参考这个网盘的

Welcome to Changhe Li's EAlib Page


About Me News Research Teaching Publications EAlib Downloads Funding Links

LIBRARY OF EVOLUTIONARY ALGORITHMS

  • Description
  • Library structure
  • Instruction to add new algorithms and problems
  • Algorithms collected so far(October 2011)
  • Problems collected so far(October 2011)
  • Coming algorithms
  • Download
  • Contributors

This is an open sources project with the aim of providing the source codes of state-of-the-art algorithms, problems, and algorithms' performance metrics for researchers in the area of evolutionary computation. Based on this framework, you can easily implement your ideas and add the codes into this library. More important, you will be also able to compare with other state-of-the-art algorithms without implementing them under a fair environment. In addition, this library will be updated as time goes on when new algorithms and problems come to this research area. Anyone, who want to contribute to this project, is welcome, and please contact me without hesitation.

This project is totally for research purpose. As a researcher in the area of evolutionary computation, I know how bad it is if there is no source codes available for the algorithm you want to compare with your own method. It may spend weeks to find out why the results you got are not as good as the results provided in the original paper. The worst case is that you just can not figure out the reason even though you spend weeks. There are many reasons: not enough details available of the algorithm, different implementations, using different languages, the stochastic characteristic of EAs ..., etc. Therefore, here comes the motivation to build up a standard platform for you to carry out experiments. I believe that this project would clear the way for your research and save you a lot of time. Well, in a word, I would like to encourage you to take part in this project and let's together make the research life easy, comfortable, and efficient for you and someone else.


This library was implemented in C++ language, it has three basic components: algorithms, problems, and algorithms' performance evaluation. The class structure is as follows:

Algorithms:

This module provides basic templates for variant EAs. The module includes three basic classes: the Chromosome,Individual, and Population classes. Functions and descriptions of them are as follows.

The Chromosome class: The most fundamental class, represents a solution of a problem and is able to take composite encoding scheme,e.g., A b 1.23 ! & true 59. It was designed based on problems' representation.

The Individual class: A simple template individual class, provides some basic operations for a single individual with variant individuals of different algorithms.

The Population class: A template population class, provides some basic operations for a population


Problems:

This module collects some benchmark problems used for the performance evaluation for EAs in different research topics. Currently, it has two types of problems, function optimization problems (FOPs) and dynamic optimization problems(DOPs).

Problem .................................................... the base class for all problems
|
+BenchmarkFunction ........................................ the base class for all function optimization problems
| |
| +FSphere ................................................ the Sphere function f(x)=x*x
+DynamicProblem ........................................... the base class for dynamic optimization problems(DOPs)
|
+DynamicContinuous ...................................... the base class for DOPs in continuous space
|
+RealDB G.............................................. the base class for GDBG benchmark
| |
| +CompositionDBG ..................................... the Composition problems in GDBG 
| |
| +RotationDBG ......................................... the Rotation problems in GDBG
|
+MovingPeak ............................................ the Moving Peaks problem
|
+DF1 ................................................... the DF1 problem

Performance metrics:

PerformSingleObj ...............................................the performance measurement for single objective optimization problem

Other major files:

Global.h ........................................................ class for global variables 
StructDec.h ..................................................... struct declaration file
newran.h ........................................................ random number generator: From library http://www.robertnz.net/nr02doc.htm


Instruction for new algorithms and new problems

To add a new algorithm:

Take a simple PSO algorithm as an example, you need to develop two classes, which are: PSOIndividual: public Individual and PSOPopulation: public Population<PSOIndividual> , then follow the steps described in the beginning of the main function in main.cpp file to run the new algorithm.

To add a new problem:

If a new problem is to be added into this lib, you need to implement it under a proper position in the Problem class. In addition, encoding and decoding work must be done in the Chromosome.cpp file if a new solution representation is needed to describe the problem.

Each algorithm and problem has a unique ID, please assign an ID to an algorithm or a problem when they are added.

Development:

You can develop your algorithms in both Visual studio 2010 in Windows and CODE::BLOCK in Ubuntu, corresponding project files are EAlib.sln and EAlib.cbp, respectively. A makefile is also available to compile the program. If you have any question about this library, please contact Changhe Li with changhe.lw@gmail.com.


Algorithms collected so far:

This lib has included some algorithms from different research areas, which are listed below:

  • Function optimization:
    • Particle swarm optimization
      1. SPSO07: C. Maurice, Standard PSO 2007, http://www.particleswarm.info/Programs.html, 2007.
      2. SLPSO: Changhe Li, Shengxiang Yang and Trung Thanh Nguyen, A Self-Learning Particle Swarm Optimizer for Global Optimization Problems. accepted by IEEE TSMCB.
    • Differential evolution
      1. Storn, R. and Price, K. (1997), Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization, 11, pp. 341--359.
      2. Thomsen R (2004) Multimodal optimization using crowding-based differential evolution. In: Proceedings of the 2004 IEEE congress on evolutionary computation, pp 1382--1389. IEEE Press, Portland, OR, USA
    • Genetic algorithms
    • Hybrid algorithms
  • Dynamic optimization
    • Particle swarm optimization
      1. CPSO: S. Yang and C. Li, A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments, IEEE Trans. Evol. Comput., vol. 14, no. 6, pp. 959-974, 2010.
      2. CPSOR: C.Li and S.Yang A General Framework of Multi-Population Methods with Clustering in Undetectable Dynamic Environments , accepted by IEEE TEC
    • Differential evolution
    • Genetic algorithms
    • Hybrid algorithms
      1. Lung R, Dumitrescu D (2010) Evolutionary swarm cooperative optimization in dynamic environments. Nat Comput Int J 9(1): 83--94.
  • Multi-Objective optimization

Problems collected so far:

  • Function optimization problems(FOPs) :Sphere, Sphere_Noisy, S_Sphere, R_Sphere, RS_Sphere, S_Sphere_CEC05, Rastrigin, Rastrigin_Noisy, S_Rastrigin, R_Rastrigin, RS_Rastrigin, S_Rastrigin_CEC05, RS_Rastrigin_CEC05, Weierstrass, RS_Weierstrass, R_Weierstrass, RS_Weierstrass_CEC05, Griewank, R_Griewank, RS_Griewank, Ackley, Ackley_Noisy, S_Ackley, R_Ackley, RS_Ackley, RS_Ackley_Bound_CEC05, Step, Quartic_Noisy, Scaffer_F6, Rosenbrock, S_Rosenbrock, S_Rosenbrock_CEC05, Schwefel_2_22, Schwefel_2_22_Noisy, S_Schwefel_2_22, R_Schwefel_2_22, RS_Schwefel_2_22, Schwefel, Schwefel_Noisy, S_Schwefel, R_Schwefel, RS_Schwefel, Schwefel_1_2, Schwefel_1_2_Noisy, S_Schwefel_1_2, S_Schwefel_1_2_Noisy, R_Schwefel_1_2, RS_Schwefel_1_2, S_Schwefel_1_2_CEC05, S_Schwefel_1_2_Noisy_CEC05, Schwefel_2_21, Penalized_1, Penalized_2, Noncont_Rastrigin, RS_Elliptic_CEC05, Elliptic, Com, R_Com, Com_CEC05, H_Com_CEC05, H_Com_Noisy_CEC05, RH_Com_CEC05, RH_Com_NarrowBasin_CEC05, RH_Com_Bound_CEC05, M_global1, M_global2, M_global3, M_global4, M_global5, S_Sphere_CEC08, Schwefel_2_21_CEC08, S_Rosenbrock_CEC08, S_Rastrigin_CEC08, S_Griewank_CEC08, S_Ackley_CEC08, RW_Gear_Train, RW_ParEst_FMSoundWaves.
  • Dynamic optimization problems(DOPs): CompositionDBG_DOP, RotationDBG_DOP, MovingPeak_DOP, DF1_DOP, Binary_DOP.

Please find the description of the above problems in the corresponding files in the library. 

Coming algorithms:

  1. CPSO-Hk: F. van den Bergh and A. P. Engelbrech, "A cooperative approach to particle swarm optimization," IEEE Trans. Evol. Comput., vol. 8, pp. 225-239, 2004.
  2. FIPS: R. Mendes, J. Kennedy, and J. Neves, "The fully informed particle swarm: Simpler, Maybe better," IEEE Trans. Evol. Comput., vol. 8, pp. 204-210, 2004.
  3. CLSPO: J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baska, "Comprehensive learning particle swarm optimizer for global optimization of multimodal functions," IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281-295, 2006.
  4. APSO:Z. Zhan, J. Zhang, Y. Li, and H. S. Chung, "Adaptive particle swarm optimization," IEEE Trans. Syst., Man, Cybern. B: Cybern., vol. 39, pp. 1362-1381, 2009.
  5. FPSO: M. A. M. de Oca, T. Stutzle, M. Birattari, and M. Dorigo, "Frankenstein's pso: A composite particle swarm optimization algorithm," IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 1120-1132, 2009.
  6. JADE: J. Zhang and A. C. Sanderson, "JADE: adaptive differential evolution with optional external archive," IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 945-958, 2009.
  7. HRCGA:C. Garcia-Martinez, M. Lozano, F. Herrera, D. Molina, and A. M.Sanchez, "Global and local real-coded genetic algorithms based on parent-centric crossover operators," Europ. J. Oper. Res., vol. 185, pp.1088-1113, 2008.
  8. rSPSO: Bird, S.; Xiaodong Li; , "Using regression to improve local convergence," Evolutionary Computation, 2007. CEC 2007. IEEE Congress on , vol., no., pp.592-599, 25-28 Sept. 2007
  9. SPSO: Parrott, D.; Xiaodong Li; , "Locating and tracking multiple dynamic optima by a particle swarm model using speciation," Evolutionary Computation, IEEE Transactions on , vol.10, no.4, pp.440-458, Aug. 2006.
  10. mQSO,mCPSO: Blackwell, T.; Branke, J.; , "Multiswarms, exclusion, and anti-convergence in dynamic environments," Evolutionary Computation, IEEE Transactions on , vol.10, no.4, pp.459-472, Aug. 2006


To download the EAlib, please click here(updated 20 July 2012).


Contributors:

Ming Yang



last updated: 09/02/2013 00:12:41

这篇关于国内也有不错的开源项目,只是感觉后劲不足,亟须自然科学基金赞助的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676052

相关文章

一文教你如何将maven项目转成web项目

《一文教你如何将maven项目转成web项目》在软件开发过程中,有时我们需要将一个普通的Maven项目转换为Web项目,以便能够部署到Web容器中运行,本文将详细介绍如何通过简单的步骤完成这一转换过程... 目录准备工作步骤一:修改​​pom.XML​​1.1 添加​​packaging​​标签1.2 添加

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

SpringBoot项目启动报错"找不到或无法加载主类"的解决方法

《SpringBoot项目启动报错找不到或无法加载主类的解决方法》在使用IntelliJIDEA开发基于SpringBoot框架的Java程序时,可能会出现找不到或无法加载主类com.example.... 目录一、问题描述二、排查过程三、解决方案一、问题描述在使用 IntelliJ IDEA 开发基于

SpringBoot项目使用MDC给日志增加唯一标识的实现步骤

《SpringBoot项目使用MDC给日志增加唯一标识的实现步骤》本文介绍了如何在SpringBoot项目中使用MDC(MappedDiagnosticContext)为日志增加唯一标识,以便于日... 目录【Java】SpringBoot项目使用MDC给日志增加唯一标识,方便日志追踪1.日志效果2.实现步

使用国内镜像源优化pip install下载的方法步骤

《使用国内镜像源优化pipinstall下载的方法步骤》在Python开发中,pip是一个不可或缺的工具,用于安装和管理Python包,然而,由于默认的PyPI服务器位于国外,国内用户在安装依赖时可... 目录引言1. 为什么需要国内镜像源?2. 常用的国内镜像源3. 临时使用国内镜像源4. 永久配置国内镜

Ubuntu中Nginx虚拟主机设置的项目实践

《Ubuntu中Nginx虚拟主机设置的项目实践》通过配置虚拟主机,可以在同一台服务器上运行多个独立的网站,本文主要介绍了Ubuntu中Nginx虚拟主机设置的项目实践,具有一定的参考价值,感兴趣的可... 目录简介安装 Nginx创建虚拟主机1. 创建网站目录2. 创建默认索引文件3. 配置 Nginx4

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

SpringBoot项目启动错误:找不到或无法加载主类的几种解决方法

《SpringBoot项目启动错误:找不到或无法加载主类的几种解决方法》本文主要介绍了SpringBoot项目启动错误:找不到或无法加载主类的几种解决方法,具有一定的参考价值,感兴趣的可以了解一下... 目录方法1:更改IDE配置方法2:在Eclipse中清理项目方法3:使用Maven命令行在开发Sprin

无需邀请码!Manus复刻开源版OpenManus下载安装与体验

《无需邀请码!Manus复刻开源版OpenManus下载安装与体验》Manus的完美复刻开源版OpenManus安装与体验,无需邀请码,手把手教你如何在本地安装与配置Manus的开源版OpenManu... Manus是什么?Manus 是 Monica 团队推出的全球首款通用型 AI Agent。Man