国内也有不错的开源项目,只是感觉后劲不足,亟须自然科学基金赞助

本文主要是介绍国内也有不错的开源项目,只是感觉后劲不足,亟须自然科学基金赞助,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://cs.cug.edu.cn/teacherweb/lichanghe/pages/EAlib.html大笑


如果上面的服务器下载EAlib源代码有问题,可以参考这个网盘的

Welcome to Changhe Li's EAlib Page


About Me News Research Teaching Publications EAlib Downloads Funding Links

LIBRARY OF EVOLUTIONARY ALGORITHMS

  • Description
  • Library structure
  • Instruction to add new algorithms and problems
  • Algorithms collected so far(October 2011)
  • Problems collected so far(October 2011)
  • Coming algorithms
  • Download
  • Contributors

This is an open sources project with the aim of providing the source codes of state-of-the-art algorithms, problems, and algorithms' performance metrics for researchers in the area of evolutionary computation. Based on this framework, you can easily implement your ideas and add the codes into this library. More important, you will be also able to compare with other state-of-the-art algorithms without implementing them under a fair environment. In addition, this library will be updated as time goes on when new algorithms and problems come to this research area. Anyone, who want to contribute to this project, is welcome, and please contact me without hesitation.

This project is totally for research purpose. As a researcher in the area of evolutionary computation, I know how bad it is if there is no source codes available for the algorithm you want to compare with your own method. It may spend weeks to find out why the results you got are not as good as the results provided in the original paper. The worst case is that you just can not figure out the reason even though you spend weeks. There are many reasons: not enough details available of the algorithm, different implementations, using different languages, the stochastic characteristic of EAs ..., etc. Therefore, here comes the motivation to build up a standard platform for you to carry out experiments. I believe that this project would clear the way for your research and save you a lot of time. Well, in a word, I would like to encourage you to take part in this project and let's together make the research life easy, comfortable, and efficient for you and someone else.


This library was implemented in C++ language, it has three basic components: algorithms, problems, and algorithms' performance evaluation. The class structure is as follows:

Algorithms:

This module provides basic templates for variant EAs. The module includes three basic classes: the Chromosome,Individual, and Population classes. Functions and descriptions of them are as follows.

The Chromosome class: The most fundamental class, represents a solution of a problem and is able to take composite encoding scheme,e.g., A b 1.23 ! & true 59. It was designed based on problems' representation.

The Individual class: A simple template individual class, provides some basic operations for a single individual with variant individuals of different algorithms.

The Population class: A template population class, provides some basic operations for a population


Problems:

This module collects some benchmark problems used for the performance evaluation for EAs in different research topics. Currently, it has two types of problems, function optimization problems (FOPs) and dynamic optimization problems(DOPs).

Problem .................................................... the base class for all problems
|
+BenchmarkFunction ........................................ the base class for all function optimization problems
| |
| +FSphere ................................................ the Sphere function f(x)=x*x
+DynamicProblem ........................................... the base class for dynamic optimization problems(DOPs)
|
+DynamicContinuous ...................................... the base class for DOPs in continuous space
|
+RealDB G.............................................. the base class for GDBG benchmark
| |
| +CompositionDBG ..................................... the Composition problems in GDBG 
| |
| +RotationDBG ......................................... the Rotation problems in GDBG
|
+MovingPeak ............................................ the Moving Peaks problem
|
+DF1 ................................................... the DF1 problem

Performance metrics:

PerformSingleObj ...............................................the performance measurement for single objective optimization problem

Other major files:

Global.h ........................................................ class for global variables 
StructDec.h ..................................................... struct declaration file
newran.h ........................................................ random number generator: From library http://www.robertnz.net/nr02doc.htm


Instruction for new algorithms and new problems

To add a new algorithm:

Take a simple PSO algorithm as an example, you need to develop two classes, which are: PSOIndividual: public Individual and PSOPopulation: public Population<PSOIndividual> , then follow the steps described in the beginning of the main function in main.cpp file to run the new algorithm.

To add a new problem:

If a new problem is to be added into this lib, you need to implement it under a proper position in the Problem class. In addition, encoding and decoding work must be done in the Chromosome.cpp file if a new solution representation is needed to describe the problem.

Each algorithm and problem has a unique ID, please assign an ID to an algorithm or a problem when they are added.

Development:

You can develop your algorithms in both Visual studio 2010 in Windows and CODE::BLOCK in Ubuntu, corresponding project files are EAlib.sln and EAlib.cbp, respectively. A makefile is also available to compile the program. If you have any question about this library, please contact Changhe Li with changhe.lw@gmail.com.


Algorithms collected so far:

This lib has included some algorithms from different research areas, which are listed below:

  • Function optimization:
    • Particle swarm optimization
      1. SPSO07: C. Maurice, Standard PSO 2007, http://www.particleswarm.info/Programs.html, 2007.
      2. SLPSO: Changhe Li, Shengxiang Yang and Trung Thanh Nguyen, A Self-Learning Particle Swarm Optimizer for Global Optimization Problems. accepted by IEEE TSMCB.
    • Differential evolution
      1. Storn, R. and Price, K. (1997), Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization, 11, pp. 341--359.
      2. Thomsen R (2004) Multimodal optimization using crowding-based differential evolution. In: Proceedings of the 2004 IEEE congress on evolutionary computation, pp 1382--1389. IEEE Press, Portland, OR, USA
    • Genetic algorithms
    • Hybrid algorithms
  • Dynamic optimization
    • Particle swarm optimization
      1. CPSO: S. Yang and C. Li, A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments, IEEE Trans. Evol. Comput., vol. 14, no. 6, pp. 959-974, 2010.
      2. CPSOR: C.Li and S.Yang A General Framework of Multi-Population Methods with Clustering in Undetectable Dynamic Environments , accepted by IEEE TEC
    • Differential evolution
    • Genetic algorithms
    • Hybrid algorithms
      1. Lung R, Dumitrescu D (2010) Evolutionary swarm cooperative optimization in dynamic environments. Nat Comput Int J 9(1): 83--94.
  • Multi-Objective optimization

Problems collected so far:

  • Function optimization problems(FOPs) :Sphere, Sphere_Noisy, S_Sphere, R_Sphere, RS_Sphere, S_Sphere_CEC05, Rastrigin, Rastrigin_Noisy, S_Rastrigin, R_Rastrigin, RS_Rastrigin, S_Rastrigin_CEC05, RS_Rastrigin_CEC05, Weierstrass, RS_Weierstrass, R_Weierstrass, RS_Weierstrass_CEC05, Griewank, R_Griewank, RS_Griewank, Ackley, Ackley_Noisy, S_Ackley, R_Ackley, RS_Ackley, RS_Ackley_Bound_CEC05, Step, Quartic_Noisy, Scaffer_F6, Rosenbrock, S_Rosenbrock, S_Rosenbrock_CEC05, Schwefel_2_22, Schwefel_2_22_Noisy, S_Schwefel_2_22, R_Schwefel_2_22, RS_Schwefel_2_22, Schwefel, Schwefel_Noisy, S_Schwefel, R_Schwefel, RS_Schwefel, Schwefel_1_2, Schwefel_1_2_Noisy, S_Schwefel_1_2, S_Schwefel_1_2_Noisy, R_Schwefel_1_2, RS_Schwefel_1_2, S_Schwefel_1_2_CEC05, S_Schwefel_1_2_Noisy_CEC05, Schwefel_2_21, Penalized_1, Penalized_2, Noncont_Rastrigin, RS_Elliptic_CEC05, Elliptic, Com, R_Com, Com_CEC05, H_Com_CEC05, H_Com_Noisy_CEC05, RH_Com_CEC05, RH_Com_NarrowBasin_CEC05, RH_Com_Bound_CEC05, M_global1, M_global2, M_global3, M_global4, M_global5, S_Sphere_CEC08, Schwefel_2_21_CEC08, S_Rosenbrock_CEC08, S_Rastrigin_CEC08, S_Griewank_CEC08, S_Ackley_CEC08, RW_Gear_Train, RW_ParEst_FMSoundWaves.
  • Dynamic optimization problems(DOPs): CompositionDBG_DOP, RotationDBG_DOP, MovingPeak_DOP, DF1_DOP, Binary_DOP.

Please find the description of the above problems in the corresponding files in the library. 

Coming algorithms:

  1. CPSO-Hk: F. van den Bergh and A. P. Engelbrech, "A cooperative approach to particle swarm optimization," IEEE Trans. Evol. Comput., vol. 8, pp. 225-239, 2004.
  2. FIPS: R. Mendes, J. Kennedy, and J. Neves, "The fully informed particle swarm: Simpler, Maybe better," IEEE Trans. Evol. Comput., vol. 8, pp. 204-210, 2004.
  3. CLSPO: J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baska, "Comprehensive learning particle swarm optimizer for global optimization of multimodal functions," IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281-295, 2006.
  4. APSO:Z. Zhan, J. Zhang, Y. Li, and H. S. Chung, "Adaptive particle swarm optimization," IEEE Trans. Syst., Man, Cybern. B: Cybern., vol. 39, pp. 1362-1381, 2009.
  5. FPSO: M. A. M. de Oca, T. Stutzle, M. Birattari, and M. Dorigo, "Frankenstein's pso: A composite particle swarm optimization algorithm," IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 1120-1132, 2009.
  6. JADE: J. Zhang and A. C. Sanderson, "JADE: adaptive differential evolution with optional external archive," IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 945-958, 2009.
  7. HRCGA:C. Garcia-Martinez, M. Lozano, F. Herrera, D. Molina, and A. M.Sanchez, "Global and local real-coded genetic algorithms based on parent-centric crossover operators," Europ. J. Oper. Res., vol. 185, pp.1088-1113, 2008.
  8. rSPSO: Bird, S.; Xiaodong Li; , "Using regression to improve local convergence," Evolutionary Computation, 2007. CEC 2007. IEEE Congress on , vol., no., pp.592-599, 25-28 Sept. 2007
  9. SPSO: Parrott, D.; Xiaodong Li; , "Locating and tracking multiple dynamic optima by a particle swarm model using speciation," Evolutionary Computation, IEEE Transactions on , vol.10, no.4, pp.440-458, Aug. 2006.
  10. mQSO,mCPSO: Blackwell, T.; Branke, J.; , "Multiswarms, exclusion, and anti-convergence in dynamic environments," Evolutionary Computation, IEEE Transactions on , vol.10, no.4, pp.459-472, Aug. 2006


To download the EAlib, please click here(updated 20 July 2012).


Contributors:

Ming Yang



last updated: 09/02/2013 00:12:41

这篇关于国内也有不错的开源项目,只是感觉后劲不足,亟须自然科学基金赞助的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676052

相关文章

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

在ASP.NET项目中如何使用C#生成二维码

《在ASP.NET项目中如何使用C#生成二维码》二维码(QRCode)已广泛应用于网址分享,支付链接等场景,本文将以ASP.NET为示例,演示如何实现输入文本/URL,生成二维码,在线显示与下载的完整... 目录创建前端页面(Index.cshtml)后端二维码生成逻辑(Index.cshtml.cs)总结

Conda国内镜像源及配置过程

《Conda国内镜像源及配置过程》文章介绍Conda镜像源使用方法,涵盖临时指定单个/多个源、永久配置及恢复默认设置,同时说明main(官方稳定)、free(逐渐弃用)、conda-forge(社区更... 目录一、Conda国内镜像源二、Conda临时使用镜像源指定单个源临时指定多个源创建环境时临时指定源

Spring Boot项目如何使用外部application.yml配置文件启动JAR包

《SpringBoot项目如何使用外部application.yml配置文件启动JAR包》文章介绍了SpringBoot项目通过指定外部application.yml配置文件启动JAR包的方法,包括... 目录Spring Boot项目中使用外部application.yml配置文件启动JAR包一、基本原理

Springboot项目登录校验功能实现

《Springboot项目登录校验功能实现》本文介绍了Web登录校验的重要性,对比了Cookie、Session和JWT三种会话技术,分析其优缺点,并讲解了过滤器与拦截器的统一拦截方案,推荐使用JWT... 目录引言一、登录校验的基本概念二、HTTP协议的无状态性三、会话跟android踪技术1. Cook

springboot项目中集成shiro+jwt完整实例代码

《springboot项目中集成shiro+jwt完整实例代码》本文详细介绍如何在项目中集成Shiro和JWT,实现用户登录校验、token携带及接口权限管理,涉及自定义Realm、ModularRe... 目录简介目的需要的jar集成过程1.配置shiro2.创建自定义Realm2.1 LoginReal