国内也有不错的开源项目,只是感觉后劲不足,亟须自然科学基金赞助

本文主要是介绍国内也有不错的开源项目,只是感觉后劲不足,亟须自然科学基金赞助,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://cs.cug.edu.cn/teacherweb/lichanghe/pages/EAlib.html大笑


如果上面的服务器下载EAlib源代码有问题,可以参考这个网盘的

Welcome to Changhe Li's EAlib Page


About Me News Research Teaching Publications EAlib Downloads Funding Links

LIBRARY OF EVOLUTIONARY ALGORITHMS

  • Description
  • Library structure
  • Instruction to add new algorithms and problems
  • Algorithms collected so far(October 2011)
  • Problems collected so far(October 2011)
  • Coming algorithms
  • Download
  • Contributors

This is an open sources project with the aim of providing the source codes of state-of-the-art algorithms, problems, and algorithms' performance metrics for researchers in the area of evolutionary computation. Based on this framework, you can easily implement your ideas and add the codes into this library. More important, you will be also able to compare with other state-of-the-art algorithms without implementing them under a fair environment. In addition, this library will be updated as time goes on when new algorithms and problems come to this research area. Anyone, who want to contribute to this project, is welcome, and please contact me without hesitation.

This project is totally for research purpose. As a researcher in the area of evolutionary computation, I know how bad it is if there is no source codes available for the algorithm you want to compare with your own method. It may spend weeks to find out why the results you got are not as good as the results provided in the original paper. The worst case is that you just can not figure out the reason even though you spend weeks. There are many reasons: not enough details available of the algorithm, different implementations, using different languages, the stochastic characteristic of EAs ..., etc. Therefore, here comes the motivation to build up a standard platform for you to carry out experiments. I believe that this project would clear the way for your research and save you a lot of time. Well, in a word, I would like to encourage you to take part in this project and let's together make the research life easy, comfortable, and efficient for you and someone else.


This library was implemented in C++ language, it has three basic components: algorithms, problems, and algorithms' performance evaluation. The class structure is as follows:

Algorithms:

This module provides basic templates for variant EAs. The module includes three basic classes: the Chromosome,Individual, and Population classes. Functions and descriptions of them are as follows.

The Chromosome class: The most fundamental class, represents a solution of a problem and is able to take composite encoding scheme,e.g., A b 1.23 ! & true 59. It was designed based on problems' representation.

The Individual class: A simple template individual class, provides some basic operations for a single individual with variant individuals of different algorithms.

The Population class: A template population class, provides some basic operations for a population


Problems:

This module collects some benchmark problems used for the performance evaluation for EAs in different research topics. Currently, it has two types of problems, function optimization problems (FOPs) and dynamic optimization problems(DOPs).

Problem .................................................... the base class for all problems
|
+BenchmarkFunction ........................................ the base class for all function optimization problems
| |
| +FSphere ................................................ the Sphere function f(x)=x*x
+DynamicProblem ........................................... the base class for dynamic optimization problems(DOPs)
|
+DynamicContinuous ...................................... the base class for DOPs in continuous space
|
+RealDB G.............................................. the base class for GDBG benchmark
| |
| +CompositionDBG ..................................... the Composition problems in GDBG 
| |
| +RotationDBG ......................................... the Rotation problems in GDBG
|
+MovingPeak ............................................ the Moving Peaks problem
|
+DF1 ................................................... the DF1 problem

Performance metrics:

PerformSingleObj ...............................................the performance measurement for single objective optimization problem

Other major files:

Global.h ........................................................ class for global variables 
StructDec.h ..................................................... struct declaration file
newran.h ........................................................ random number generator: From library http://www.robertnz.net/nr02doc.htm


Instruction for new algorithms and new problems

To add a new algorithm:

Take a simple PSO algorithm as an example, you need to develop two classes, which are: PSOIndividual: public Individual and PSOPopulation: public Population<PSOIndividual> , then follow the steps described in the beginning of the main function in main.cpp file to run the new algorithm.

To add a new problem:

If a new problem is to be added into this lib, you need to implement it under a proper position in the Problem class. In addition, encoding and decoding work must be done in the Chromosome.cpp file if a new solution representation is needed to describe the problem.

Each algorithm and problem has a unique ID, please assign an ID to an algorithm or a problem when they are added.

Development:

You can develop your algorithms in both Visual studio 2010 in Windows and CODE::BLOCK in Ubuntu, corresponding project files are EAlib.sln and EAlib.cbp, respectively. A makefile is also available to compile the program. If you have any question about this library, please contact Changhe Li with changhe.lw@gmail.com.


Algorithms collected so far:

This lib has included some algorithms from different research areas, which are listed below:

  • Function optimization:
    • Particle swarm optimization
      1. SPSO07: C. Maurice, Standard PSO 2007, http://www.particleswarm.info/Programs.html, 2007.
      2. SLPSO: Changhe Li, Shengxiang Yang and Trung Thanh Nguyen, A Self-Learning Particle Swarm Optimizer for Global Optimization Problems. accepted by IEEE TSMCB.
    • Differential evolution
      1. Storn, R. and Price, K. (1997), Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization, 11, pp. 341--359.
      2. Thomsen R (2004) Multimodal optimization using crowding-based differential evolution. In: Proceedings of the 2004 IEEE congress on evolutionary computation, pp 1382--1389. IEEE Press, Portland, OR, USA
    • Genetic algorithms
    • Hybrid algorithms
  • Dynamic optimization
    • Particle swarm optimization
      1. CPSO: S. Yang and C. Li, A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments, IEEE Trans. Evol. Comput., vol. 14, no. 6, pp. 959-974, 2010.
      2. CPSOR: C.Li and S.Yang A General Framework of Multi-Population Methods with Clustering in Undetectable Dynamic Environments , accepted by IEEE TEC
    • Differential evolution
    • Genetic algorithms
    • Hybrid algorithms
      1. Lung R, Dumitrescu D (2010) Evolutionary swarm cooperative optimization in dynamic environments. Nat Comput Int J 9(1): 83--94.
  • Multi-Objective optimization

Problems collected so far:

  • Function optimization problems(FOPs) :Sphere, Sphere_Noisy, S_Sphere, R_Sphere, RS_Sphere, S_Sphere_CEC05, Rastrigin, Rastrigin_Noisy, S_Rastrigin, R_Rastrigin, RS_Rastrigin, S_Rastrigin_CEC05, RS_Rastrigin_CEC05, Weierstrass, RS_Weierstrass, R_Weierstrass, RS_Weierstrass_CEC05, Griewank, R_Griewank, RS_Griewank, Ackley, Ackley_Noisy, S_Ackley, R_Ackley, RS_Ackley, RS_Ackley_Bound_CEC05, Step, Quartic_Noisy, Scaffer_F6, Rosenbrock, S_Rosenbrock, S_Rosenbrock_CEC05, Schwefel_2_22, Schwefel_2_22_Noisy, S_Schwefel_2_22, R_Schwefel_2_22, RS_Schwefel_2_22, Schwefel, Schwefel_Noisy, S_Schwefel, R_Schwefel, RS_Schwefel, Schwefel_1_2, Schwefel_1_2_Noisy, S_Schwefel_1_2, S_Schwefel_1_2_Noisy, R_Schwefel_1_2, RS_Schwefel_1_2, S_Schwefel_1_2_CEC05, S_Schwefel_1_2_Noisy_CEC05, Schwefel_2_21, Penalized_1, Penalized_2, Noncont_Rastrigin, RS_Elliptic_CEC05, Elliptic, Com, R_Com, Com_CEC05, H_Com_CEC05, H_Com_Noisy_CEC05, RH_Com_CEC05, RH_Com_NarrowBasin_CEC05, RH_Com_Bound_CEC05, M_global1, M_global2, M_global3, M_global4, M_global5, S_Sphere_CEC08, Schwefel_2_21_CEC08, S_Rosenbrock_CEC08, S_Rastrigin_CEC08, S_Griewank_CEC08, S_Ackley_CEC08, RW_Gear_Train, RW_ParEst_FMSoundWaves.
  • Dynamic optimization problems(DOPs): CompositionDBG_DOP, RotationDBG_DOP, MovingPeak_DOP, DF1_DOP, Binary_DOP.

Please find the description of the above problems in the corresponding files in the library. 

Coming algorithms:

  1. CPSO-Hk: F. van den Bergh and A. P. Engelbrech, "A cooperative approach to particle swarm optimization," IEEE Trans. Evol. Comput., vol. 8, pp. 225-239, 2004.
  2. FIPS: R. Mendes, J. Kennedy, and J. Neves, "The fully informed particle swarm: Simpler, Maybe better," IEEE Trans. Evol. Comput., vol. 8, pp. 204-210, 2004.
  3. CLSPO: J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baska, "Comprehensive learning particle swarm optimizer for global optimization of multimodal functions," IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281-295, 2006.
  4. APSO:Z. Zhan, J. Zhang, Y. Li, and H. S. Chung, "Adaptive particle swarm optimization," IEEE Trans. Syst., Man, Cybern. B: Cybern., vol. 39, pp. 1362-1381, 2009.
  5. FPSO: M. A. M. de Oca, T. Stutzle, M. Birattari, and M. Dorigo, "Frankenstein's pso: A composite particle swarm optimization algorithm," IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 1120-1132, 2009.
  6. JADE: J. Zhang and A. C. Sanderson, "JADE: adaptive differential evolution with optional external archive," IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 945-958, 2009.
  7. HRCGA:C. Garcia-Martinez, M. Lozano, F. Herrera, D. Molina, and A. M.Sanchez, "Global and local real-coded genetic algorithms based on parent-centric crossover operators," Europ. J. Oper. Res., vol. 185, pp.1088-1113, 2008.
  8. rSPSO: Bird, S.; Xiaodong Li; , "Using regression to improve local convergence," Evolutionary Computation, 2007. CEC 2007. IEEE Congress on , vol., no., pp.592-599, 25-28 Sept. 2007
  9. SPSO: Parrott, D.; Xiaodong Li; , "Locating and tracking multiple dynamic optima by a particle swarm model using speciation," Evolutionary Computation, IEEE Transactions on , vol.10, no.4, pp.440-458, Aug. 2006.
  10. mQSO,mCPSO: Blackwell, T.; Branke, J.; , "Multiswarms, exclusion, and anti-convergence in dynamic environments," Evolutionary Computation, IEEE Transactions on , vol.10, no.4, pp.459-472, Aug. 2006


To download the EAlib, please click here(updated 20 July 2012).


Contributors:

Ming Yang



last updated: 09/02/2013 00:12:41

这篇关于国内也有不错的开源项目,只是感觉后劲不足,亟须自然科学基金赞助的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676052

相关文章

javafx 如何将项目打包为 Windows 的可执行文件exe

《javafx如何将项目打包为Windows的可执行文件exe》文章介绍了三种将JavaFX项目打包为.exe文件的方法:方法1使用jpackage(适用于JDK14及以上版本),方法2使用La... 目录方法 1:使用 jpackage(适用于 JDK 14 及更高版本)方法 2:使用 Launch4j(

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke

SpringBoot项目引入token设置方式

《SpringBoot项目引入token设置方式》本文详细介绍了JWT(JSONWebToken)的基本概念、结构、应用场景以及工作原理,通过动手实践,展示了如何在SpringBoot项目中实现JWT... 目录一. 先了解熟悉JWT(jsON Web Token)1. JSON Web Token是什么鬼

手把手教你idea中创建一个javaweb(webapp)项目详细图文教程

《手把手教你idea中创建一个javaweb(webapp)项目详细图文教程》:本文主要介绍如何使用IntelliJIDEA创建一个Maven项目,并配置Tomcat服务器进行运行,过程包括创建... 1.启动idea2.创建项目模板点击项目-新建项目-选择maven,显示如下页面输入项目名称,选择

Jenkins中自动化部署Spring Boot项目的全过程

《Jenkins中自动化部署SpringBoot项目的全过程》:本文主要介绍如何使用Jenkins从Git仓库拉取SpringBoot项目并进行自动化部署,通过配置Jenkins任务,实现项目的... 目录准备工作启动 Jenkins配置 Jenkins创建及配置任务源码管理构建触发器构建构建后操作构建任务

Nginx、Tomcat等项目部署问题以及解决流程

《Nginx、Tomcat等项目部署问题以及解决流程》本文总结了项目部署中常见的four类问题及其解决方法:Nginx未按预期显示结果、端口未开启、日志分析的重要性以及开发环境与生产环境运行结果不一致... 目录前言1. Nginx部署后未按预期显示结果1.1 查看Nginx的启动情况1.2 解决启动失败的

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

在cscode中通过maven创建java项目

在cscode中创建java项目 可以通过博客完成maven的导入 建立maven项目 使用快捷键 Ctrl + Shift + P 建立一个 Maven 项目 1 Ctrl + Shift + P 打开输入框2 输入 "> java create"3 选择 maven4 选择 No Archetype5 输入 域名6 输入项目名称7 建立一个文件目录存放项目,文件名一般为项目名8 确定