本文主要是介绍find the mincost route,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Crawling in process... Crawling failed Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
Input
接下来的M行里,每行包括3个整数a,b,c.代表a和b之间有一条通路,并且需要花费c元(c <= 100)。
Output
Sample Input
3 3 1 2 1 2 3 1 1 3 1 3 3 1 2 1 1 2 3 2 3 1
Sample Output
3 It's impossible.
对于i到j的最短路径有两种形式,①经过k,最短路径就是i到k加上k到j的距离;②不过k,最短路径就是i 到j的距离。
求无向图最小环,枚举最大环的连接点,更新环,用dist[i][j]表示i到j的最短路径,当前最小环的权用minn表示,则对于每一个接点k (1到k - 1中间结点的最短路径都已经确定), 有minn = ( dist[i][j] + maze[j][k] + maze[k][i] , minn ),即环的权 = i到j的最短路径(1 < i,j <= k - 1) + jk边 + ki边。
代码:
#include"cstdio"
#include"cstring"
#include"iostream"
#include"algorithm"using namespace std;#define INF 100000000int n,m;
int maze[105][105];
int dist[105][105];void initial()
{for(int i = 0;i < 105;i++){for(int j = 0;j < 105;j++){maze[i][j] = INF;dist[i][j] = INF;}}
}void Floyd()
{int minn = INF;for(int k = 1;k <= n;k++) //对于每一个k值,1到k - 1中间结点的最短路径都已经确定{for(int i = 1;i < k;i++){for(int j = i + 1;j < k;j++){minn = min(dist[i][j] + maze[j][k] + maze[k][i],minn); //更新环的权值}}for(int i = 1;i <= n;i++){for(int j = 1;j <= n;j++){dist[i][j] = min(dist[i][j],dist[i][k] + dist[k][j]); //保存i到j之间最短路径}}}if(minn == INF){printf("It's impossible.\n");}else{printf("%d\n",minn);}
}int main()
{while(~scanf("%d%d",&n,&m)){initial();int a,b,c;while(m--){scanf("%d%d%d",&a,&b,&c);if(a != b && maze[a][b] > c){maze[a][b] = c;maze[b][a] = c;dist[a][b] = c;dist[b][a] = c;}}Floyd();}return 0;
}
这篇关于find the mincost route的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!