三门问题(Python运算蒙提霍尔问题)

2024-02-03 20:04

本文主要是介绍三门问题(Python运算蒙提霍尔问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

三门问题

文章目录

  • 三门问题
    • 1.简介
    • 2.问题
    • 3.解答
      • 3.1 概率思维
      • 3.2 逆向思维
      • 3.3 推理思维
      • 3.4 代码验证

1.简介

Monty_open_door

蒙提霍尔问题(英文:Monty Hall problem),亦称为蒙特霍问题山羊问题三门问题,是一个源自博弈论的数学游戏问题,参赛者会看见三扇门,其中一扇门的里面有一辆汽车,选中里面是汽车的那扇门,就可以赢得该辆汽车,另外两扇门里面则都是一只山羊。当参赛者选定了一扇门,主持人会开启另一扇是山羊的门;并问:“要不要换一扇门?”依照玛丽莲·沃斯·莎凡特的见解,参赛者应该换,换门的话,赢得汽车的概率是2/3。这问题亦被叫做蒙提霍尔悖论:因为该问题的答案虽在逻辑上并无矛盾,但十分违反直觉。

蒙提霍尔问题得名于主持人蒙蒂·霍尔,他主持美国的电视游戏节目《Let’s Make a Deal(英语:Let’s Make a Deal)》时,会有这样的游戏,他也确实会先开启另一扇是山羊的门,来吸引观众眼球;但他不会允许参赛者换门。蒙提霍尔问题首次出现,可能是在1889年约瑟夫·贝特朗(英语:Joseph Bertrand)所著的_Calcul des probabilités_一书中。在这本书中,这条问题被称为“贝特朗箱子悖论(英语:Bertrand’s box paradox)”(Bertrand’s Box Paradox)。另一种形式则是三囚问题(Three prisoners problem),原理是一模一样的,1959年出现在马丁·加德纳的《数学游戏》专栏中,其后被改编成各种语言的版本。

2.问题

以下是蒙提霍尔问题的一个著名的叙述,来自Craig F. Whitaker于1990年寄给《展示杂志》(Parade Magazine)玛丽莲·沃斯·莎凡特(Marilyn vos Savant)专栏的信件:

假设你正在参加一个游戏节目,你被要求在三扇门中选择一扇:其中一扇后面有一辆车;其余两扇后面则是山羊。你选择了一道门,假设是一号门,然后知道门后面有什么的主持人,开启了另一扇后面有山羊的门,假设是三号门。他然后问你:“你想选择二号门吗?”变换你的选择对你来说是一种优势吗?

Selvin在随后寄给American Statistician的信件中(1975年8月)首次使用了“蒙提霍尔问题”这个名称。

Mueser和Granberg透过在主持人的行为身上加上明确的限制条件,提出了对这个问题的一种不含糊的陈述:

  1. 参赛者在三扇门中挑选一扇,他并不知道里面有什么。

  2. 主持人知道每扇门后面有什么。

  3. 主持人必须开启剩下的其中一扇门,并且必须提供换门的机会。

  4. 主持人永远都会挑一扇有山羊的门。

    • 如果参赛者挑了一扇有山羊的门,主持人必须挑另一扇有山羊的门。

    • 如果参赛者挑了一扇有汽车的门,主持人随机(概率均匀分布)在另外两扇门中挑一扇有山羊的门。

  5. 参赛者会被问是否保持他的原来选择,还是转而选择剩下的那一道门。

变换选择可以增加参赛者的机会吗?

3.解答

玛丽莲·沃斯·莎凡特在1980年代中期因跻身《基尼斯世界纪录》中的智商纪录保持人而成名(结果为185)。当时她的答复在《大观杂志》刊出之后引起举世关注。她的解答彻底违反直觉,并引起众多数学家的质疑。但随后的阐释让质疑者颜面无光。显然,莎凡特的答案是正确的,当参赛者转向另一扇门而不是继续维持原先的选择时,赢得汽车的机会将会加倍。

3.1 概率思维

Monty_tree_door_math

共有三种可能的情况,全部都有相等的可能性(1/3):

  1. 参赛者挑汽车,主持人挑两头羊的任何一头。变换就会失去汽车。
  2. 参赛者挑A羊,主持人挑B羊。变换将赢得汽车。
  3. 参赛者挑B羊,主持人挑A羊。变换将赢得汽车。

在第一个情况的表述可以分成两种情况:

  • 参赛者挑汽车,主持人挑两头羊的任何一头。变换就会失去汽车。
    • 参赛者挑汽车,主持人挑A羊。变换将失败。
    • 参赛者挑汽车,主持人挑B羊。变换将失败。

在2和3两种情况,参赛者可以通过变换选择而赢得汽车。第一种情况是唯一一种参赛者保持原来选择而赢的情况。因为三种情况中有两种是通过变换选择会赢的,所以变换选择会赢的概率是2/3。

其他情况:

  1. 如果主持人并不知道那扇门后面有汽车,主持人随便打开一扇门(可能主持人会直接开到汽车门,导致游戏结束)。
  2. 如果主持人先从两只山羊中剔除其中一只,然后才叫参赛者作出选择的话,选中的机会将会是1/2。

3.2 逆向思维

用逆向思维的方式来理解这个选择(以主持人的角度来思考)。无论参赛者开始的选择如何,在被主持人问到是否更换时都选择更换。

  1. 如果参赛者先选中山羊,换之后百分之百赢;
  2. 如果参赛者先选中汽车,换之后百分之百输。

选中山羊的概率是2/3,选中汽车的概率是1/3。所以不管怎样都换,相对最初的赢得汽车仅为1/3的机率来说,转换选择可以增加赢的机会。

一些更简洁的解法:

  1. 最初选羊的概率是2/3,而主持人选羊以后,你变换后选羊的概率就是你最初选车的概率,1/3。
  2. 最初选车的概率是1/3,而主持人选羊以后,你变换后选车的概率就是你最初选羊的概率,2/3。
  3. 最初选车的概率为1/3,车在另外两个门后的概率为2/3,主持人选羊以后,车在最后那张门后的概率还是原来两张门后有车的概率,2/3。

3.3 推理思维

三门问题是多门问题之中最难的情况。如果把三门变成一千个门,假设有车的门是987号,你选了1号门,然后主持人打开了除了你选的1号和有车的门987号之外的998扇门。改选987号门选中的概率是不改选择的999倍,即换门后选中车的概率是百分之九百九十九。

3.4 代码验证

在电脑上运行如下python代码

import randomdef monty_hall():doors = [0, 0, 1]  # 0代表山羊,1代表汽车random.shuffle(doors)  # 随机排列门的顺序choice = random.randint(0, 2)  # 参赛者随机选择一扇门# 主持人打开一扇山羊门for i in range(3):if doors[i] == 0 and i != choice:opened_door = ibreak# 参赛者选择是否换门switch = Trueif switch:for i in range(3):if i != choice and i != opened_door:choice = ibreakreturn doors[choice]  # 返回选择的门的结果(0代表山羊,1代表汽车)# 进行10000次模拟实验
num_trials = 10000
win_count_switch = 0
win_count_stay = 0for _ in range(num_trials):result = monty_hall()if result == 1:win_count_switch += 1else:win_count_stay += 1win_probability_switch = win_count_switch / num_trials
win_probability_stay = win_count_stay / num_trialsprint(f"模拟实验中换门赢得汽车的概率: {win_probability_switch}")
print(f"模拟实验中不换门赢得汽车的概率: {win_probability_stay}")

运行后可知

模拟实验中换门赢得汽车的概率: 0.6698

模拟实验中不换门赢得汽车的概率: 0.3302

这篇关于三门问题(Python运算蒙提霍尔问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675238

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学