使用MATLAB驱动USRP-N320实现OFDM自收自发

2024-02-03 12:20

本文主要是介绍使用MATLAB驱动USRP-N320实现OFDM自收自发,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、收发代码
  • 二、截取一帧 OFDM
  • 三、执行主函数
  • 四、运行结果
  • 五、资源自取


前言

本文作为实验结果记录及测试,方便后面回顾所做的工作。本文基于一台电脑和一台 USRP 设备实现了 OFDM 自发和自收功能
在这里插入图片描述


一、收发代码

ofdm_tx_rx_test.m
核心代码:

%% USRP initation
if strcmp(SYS.Platform, 'N320/N321')radio_tx = comm.SDRuTransmitter(...'Platform',             SYS.Platform, ...'SerialNum',            SYS.Address, ...'MasterClockRate',      SYS.MasterClockRate, ...'CenterFrequency',      SYS.USRPCenterFrequency, ...'Gain',                 SYS.USRPGain, ...'InterpolationFactor',  SYS.USRPInterpolationFactor);radio_rx = comm.SDRuReceiver(...'Platform',             SYS.Platform, ...'SerialNum',            SYS.Address, ...'MasterClockRate',      SYS.MasterClockRate, ...'CenterFrequency',      SYS.USRPCenterFrequency, ...'Gain',                 SYS.USRPGain, ...'DecimationFactor',     SYS.USRPDecimationFactor, ...'SamplesPerFrame',      SYS.USRPFrameLength, ...'OutputDataType',       'double');
elseerror(message('sdru:examples:UnsupportedPlatform',platform));
endradio_tx.ChannelMapping = [1];     % Use both TX channels
radio_tx.UnderrunOutputPort = true;radio_rx.ChannelMapping = [2];     % Use both TX channels
radio_rx.OverrunOutputPort = true;

二、截取一帧 OFDM

process_ofdm.m
核心代码:

function fft_data = process_ofdm(data_filename, Tx_cd)
load(data_filename)
% load('rx_recv_test.mat')
rxmimo2x2 = rx_recv_test;
%% 修改
Ng=64;
Nfft=256;
N_fft=Nfft;
P_f_inter=6;      %导频间隔
nn=1:Ng;
i=1;
for delay=0:5e5yy(i) = rxmimo2x2(nn+delay)'*(rxmimo2x2(delay+nn+Nfft));i=i+1;
end
plot(abs(yy))
val=zeros(1,1010);
pos=zeros(1,1010);
% 找到第一个峰
[val1,pos1]=max(yy(66910:66930));
val(1)=val1;
pos(1)=pos1+66910-1;
% 记录每个峰值对应的索引
for cnt=1:1010-1    [val1,pos1]=max(yy(pos(cnt)+250:pos(cnt)+390)); % 250和390是试出来的val(cnt+1)=val1;pos(cnt+1)=pos1+pos(cnt)+250;
end

这里需要手动修改几个参数,按照下面步骤做:

  • 注释第 1、2 两行,放开第 3 行
    在这里插入图片描述
  • 在第 17 行打个断点
    在这里插入图片描述
  • 运行程序 process_ofdm.m,其中黄框内的就是我们发送的一帧 OFDM
    在这里插入图片描述
  • 将图片放大,找到其中的第一个峰值,这里是 66923
    在这里插入图片描述
    因此上面程序第 19~22 行的 66910 和 66930 是为了将 66923 峰值索引包含在其范围内
% 找到第一个峰
[val1,pos1]=max(yy(66910:66930));
val(1)=val1;
pos(1)=pos1+66910-1;
  • 将第 17 行断点取消,运行 process_ofdm.m,保证程序运行无报错
  • 放开第 1、2 两行,注释第 3 行
    在这里插入图片描述

三、执行主函数

在这里我们对传输的 OFDM 进行误码率计算
main.m
核心代码:

%% 插入保护间隔、循环前缀
Tx_cd=[ifft_data(N_fft-N_cp+1:end,:);ifft_data];%把ifft的末尾N_cp个数补充到最前面%% 相关峰处理
fft_data = process_ofdm(data_filename, Tx_cd);%% 信道估计与插值(均衡)
data3=fft_data(1:N_fft,:); 
Rx_pilot=data3(P_f_station(1:end),:); %接收到的导频
h=Rx_pilot./pilot_seq; 
H=interp1( P_f_station(1:end)',h,data_station(1:end)','linear','extrap');%分段线性插值:插值点处函数值由连接其最邻近的两侧点的线性函数预测。对超出已知点集的插值点用指定插值方法计算函数值
% factor_64QAM = [3.5361    4.0446    4.7685    5.5782    6.7192    7.6219    8.5716    7.5685    6.4031    4.1531];%% 信道校正
data_aftereq=data3(data_station(1:end),:)./H;%% 并串转换
data_aftereq=reshape(data_aftereq,[],1);
data_aftereq=data_aftereq(1:length(spread_data));
data_aftereq=reshape(data_aftereq,N_sc,length(data_aftereq)/N_sc);%% 解扩
demspread_data = despread(data_aftereq,code);       % 数据解扩%% QPSK/16QAM/64QAM解调
De_Bit = demodulation(demspread_data, MODE);%% 信道译码(维特比译码)
trellis = poly2trellis(7,[133 171]);
rx_c_de = vitdec(De_Bit,trellis,tblen,'trunc','hard');   %硬判决%% 计算误码率
[err,Ber2] = biterr(De_Bit(1:length(code_data)),code_data);%译码前的误码率
[err, Ber] = biterr(rx_c_de(1:length(P_data)),P_data);%译码后的误码率

四、运行结果

以发送和接收的前 30 个数据为例:
在这里插入图片描述
误码率计算:
在这里插入图片描述

五、资源自取

链接:https://mbd.pub/o/bread/ZZqak5xq
在这里插入图片描述


我的qq:2442391036,欢迎交流!


这篇关于使用MATLAB驱动USRP-N320实现OFDM自收自发的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/674142

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain