解析Excel文件内容,按每列首行元素名打印出某个字符串的统计占比(超详细)

本文主要是介绍解析Excel文件内容,按每列首行元素名打印出某个字符串的统计占比(超详细),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.示例: 

开发需求:读取Excel文件,统计第3列到第5列中每列的"False"字段占比,统计第6列中的"Pass"字段占比,并按每列首行元素名打印出统计占比

1.1 实现代码1:列数为常量

        请确保替换`'your_excel_file.xlsx'`为你实际的Excel文件路径。这段代码会按每列首行元素名打印出第3列到第5列中每列的"False"字段占比,以及第6列中"Pass"字段的占比

#!/usr/bin/env python3
# _*_ coding : UTF-8 _*_
# 开发人员 :jly
# 开发时间 :2024/01/31 18:57:54
# 文件名称 :rate.py
# 开发工具 :Visual Studio Codeimport pandas as pd# 读取Excel文件
file_path = 'result.xlsx'  # 替换成你的Excel文件路径
df = pd.read_excel(file_path)# 定义一个函数用于计算占比
def calculate_percentage(column, target_value):return column.value_counts(normalize=True).get(target_value, 0) * 100def str_percentages():false_percentages = df.iloc[:, 2:5].apply(lambda col: calculate_percentage(col, False), axis=0) # 统计第3列到第5列中每列的"False"字段占比Fail_percentage = calculate_percentage(df.iloc[:, 5], 'Fail')  # 统计第6列中"Fail"字段占比return false_percentages, Fail_percentage# 打印结果
def print_rate():print("第3列到第5列中每列的\"False\"字段占比:")for column_name, percentage in zip(df.columns[2:5], str_percentages()[0]):print(f"False Rate Of {column_name}: {percentage:.2f}%")print("\n第6列中\"Fail\"字段占比:")print(f"Fail Rate Of Result: {str_percentages()[1]:.2f}%")if __name__ == '__main__':print_rate()

运行结果:

1.2 实现代码2:列数为变量

#!/usr/bin/env python3
# _*_ coding : UTF-8 _*_
# 开发人员 :jly
# 开发时间 :2024/01/31 18:57:54
# 文件名称 :rate.py
# 开发工具 :Visual Studio Codeimport pandas as pd# 读取Excel文件
file_path = 'result.xlsx'  # 替换成你的Excel文件路径
df = pd.read_excel(file_path)# 定义一个函数用于计算占比
def calculate_percentage(column, target_value):return column.value_counts(normalize=True).get(target_value, 0) * 100def str_percentages(col_R):false_percentages = df.iloc[:, 2:int("{}".format(col_R))].apply(lambda col: calculate_percentage(col, False), axis=0) # 统计第3列到第5列中每列的"False"字段占比Fail_percentage = calculate_percentage(df.iloc[:, int("{}".format(col_R))], 'Fail')  # 统计第6列中"Fail"字段占比return false_percentages, Fail_percentage# 打印结果
def print_rate(col_R):print("第3列到第col_R列中每列的\"False\"字段占比:")for column_name, percentage in zip(df.columns[2:int("{}".format(col_R))], str_percentages(col_R)[0]):print(f"False Rate Of {column_name}: {percentage:.2f}%")print("\n第col_R列中\"Fail\"字段占比:")print(f"Fail Rate Of Result: {str_percentages(col_R)[1]:.2f}%")if __name__ == '__main__':print_rate(5)  #col_R=最后一列数(6)-1

运行结果:

这篇关于解析Excel文件内容,按每列首行元素名打印出某个字符串的统计占比(超详细)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/670356

相关文章

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Python创建Excel的4种方式小结

《Python创建Excel的4种方式小结》这篇文章主要为大家详细介绍了Python中创建Excel的4种常见方式,文中的示例代码简洁易懂,具有一定的参考价值,感兴趣的小伙伴可以学习一下... 目录库的安装代码1——pandas代码2——openpyxl代码3——xlsxwriterwww.cppcns.c