GAT学习:PyG实现GAT(自定义GAT层)网络(四)

2024-02-01 08:18

本文主要是介绍GAT学习:PyG实现GAT(自定义GAT层)网络(四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PyG实现自定义GAT层

  • 完整代码

本系列中的第三篇介绍了如何调用pyg封装好的GAT函数,当然同样的,我们需要学会如何自定义网络层以满足研究需求。

完整代码

import torch
import math
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops,remove_self_loops,softmax
from torch_geometric.datasets import Planetoid
import ssl
import torch.nn.functional as Fclass GATConv(MessagePassing):def __init__(self, in_channels,out_channels, heads: int = 1, concat: bool = True,negative_slope: float = 0.2, dropout: float = 0.,add_self_loops: bool = True, bias: bool = True, **kwargs):kwargs.setdefault('aggr', 'add')super(GATConv, self).__init__(node_dim=0, **kwargs)#in_channel&out channel就是我们的输入输出数self.in_channels = in_channelsself.out_channels = out_channels#head即设置几个attention头self.heads = heads#concat用于设置是否拼接attention的输出self.concat = concat#negative_slope设置leaklyRelu的参数self.negative_slope = negative_slopeself.dropout = dropout#add_self_loops设置是否添加自环self.add_self_loops = add_self_loops#这里将特征映射到每个attention头所需要的特征数,从而满足每个attention头的输入self.lin = Linear(in_channels, heads * out_channels, bias=False)self.att = Parameter(torch.Tensor(1, heads, out_channels))if bias and concat:self.bias = torch.nn.Parameter(torch.Tensor(heads * out_channels))elif bias and not concat:self.bias = torch.nn.Parameter(torch.Tensor(out_channels))else:self.register_parameter('bias', None)self._alpha = None#用于重置参数self.reset_parameters()def reset_parameters(self):glorot(self.lin.weight)glorot(self.att)zeros(self.bias)def forward(self, x, edge_index, return_attention_weights=None):H, C = self.heads, self.out_channelsx = self.lin(x).view(-1, H, C)#这里alpha的规模为[node_num,heads]alpha = (x * self.att).sum(dim=-1)if self.add_self_loops:num_nodes = x.size(0)num_nodes = x.size(0) if x is not None else num_nodesedge_index, _ = remove_self_loops(edge_index)edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes)# propagate_type: (x: OptPairTensor, alpha: OptPairTensor)out = self.propagate(edge_index, x=x,alpha=alpha)alpha = self._alphaself._alpha = Noneif self.concat:out = out.view(-1, self.heads * self.out_channels)else:out = out.mean(dim=1)if self.bias is not None:out += self.biasif isinstance(return_attention_weights, bool):return out, (edge_index, alpha)else:return outdef message(self, x_j, alpha_j, index):alpha = alpha_j#alpha_j[edge_num,heads]alpha = F.leaky_relu(alpha, self.negative_slope)alpha = softmax(alpha, index)self._alpha = alphaalpha = F.dropout(alpha, p=self.dropout, training=self.training)return x_j * alpha.unsqueeze(-1)class Net(torch.nn.Module):def __init__(self):super(Net,self).__init__()self.gat1=GATConv(dataset.num_node_features,8,8,dropout=0.6)self.gat2=GATConv(64,7,1,dropout=0.6)def forward(self,data):x,edge_index=data.x, data.edge_indexx=self.gat1(x,edge_index)x=self.gat2(x,edge_index)return F.log_softmax(x,dim=1)dataset = Planetoid(root='Cora', name='Cora')
x=dataset[0].x
edge_index=dataset[0].edge_indexdevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
data = dataset[0].to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)model.train()
for epoch in range(100):optimizer.zero_grad()out = model(data)loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])loss.backward()optimizer.step()model.eval()
_, pred = model(data).max(dim=1)
correct = int(pred[data.test_mask].eq(data.y[data.test_mask]).sum().item())
acc = correct/int(data.test_mask.sum())
print('Accuracy:{:.4f}'.format(acc))
>>>Accuracy:0.7930

这篇关于GAT学习:PyG实现GAT(自定义GAT层)网络(四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666654

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo