深入理解G0和G1指令:C++中的实现与激光雕刻应用

2024-02-01 04:36

本文主要是介绍深入理解G0和G1指令:C++中的实现与激光雕刻应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章

  • ⭐深入理解G0和G1指令:C++中的实现与激光雕刻应用
  • ⭐基于二值化图像转GCode的单向扫描实现
  • ⭐基于二值化图像转GCode的双向扫描实现
  • ⭐基于二值化图像转GCode的斜向扫描实现
  • 基于二值化图像转GCode的螺旋扫描实现
  • 基于OpenCV灰度图像转GCode的单向扫描实现
  • 基于OpenCV灰度图像转GCode的双向扫描实现
  • 基于OpenCV灰度图像转GCode的斜向扫描实现
  • 基于OpenCV灰度图像转GCode的螺旋扫描实现

激光雕刻单向扫描
激光雕刻单向扫描仿真
激光雕刻双向扫描
激光雕刻双向扫描仿真
激光雕刻斜向扫描

激光雕刻单向斜向扫描仿真

激光雕刻双向斜向扫描仿真
激光雕刻螺旋扫描

激光雕刻螺旋扫描仿真


  • 深入理解G0和G1指令:C++中的实现与激光雕刻应用
    • G0和G1概述
      • G0:快速移动
      • G1:线性插补运动
    • C++实现示例
    • 使用示例
    • 优化
    • 总结

深入理解G0和G1指令:C++中的实现与激光雕刻应用

在激光雕刻领域,G0和G1指令是至关重要的命令,用于控制激光雕刻机的运动。在本篇博客中,我们将深入探讨这两个指令的意义,并展示一个用C++23实现的简单示例。

G0和G1概述

G0和G1是G代码中的两种基本运动指令,广泛应用于激光雕刻等领域。它们分别代表了快速移动和线性插补运动。

G0:快速移动

快速运动是激光器在不进行切割或雕刻的情况下以较高的速度快速移动到目标位置。这是一种非加工移动,通常用于快速定位或避免工件碰撞。

G1:线性插补运动

G1指令用于进行线性插补运动,即在两个点之间以较慢的速度沿直线路径移动。这是实际的切削或激光刻蚀运动,用于加工工件表面。

C++实现示例

在 2D 激光雕刻领域,通常只需关注 G0 和 G1 指令,他们的格式如下:

Rapid Linear Motion — G0

G0 [X<pos>] [Y<pos>] [S<power>]

Linear Motion at Feed Rate — G1

G1 [X<pos>] [Y<pos>] [S<power>]

其中,X、Y 是坐标轴的数值,表示激光器在各个轴上的目标位置。

通过在运动控制程序中使用 G1 或 G0 指令,可以控制激光器的运动,实现进给运动或快速运动,具体取决于所使用的指令。

S 表示激光器功率,激光器区间值范围 [0,1000]。

注意:每个行业不同,指令的定义略有不同。
例如 3D打印领域 添加一个层(Layer)的概念,他们就会存在 Z 轴,那么他们的指令就如下:
G0 [E<pos>] [F<rate>] [S<power>] [X<pos>] [Y<pos>] [Z<pos>]
G1 [E<pos>] [F<rate>] [S<power>] [X<pos>] [Y<pos>] [Z<pos>]
具体的格式可能因运动控制系统的不同而有所差异,建议查阅相应运动控制系统的文档以获取准确的指令格式信息。

下面是一个简单的C++示例,展示了如何使用结构体和可选值(optional)来表示G0和G1指令:

#include <optional>
#include <string>
#include <format>struct G0 {std::optional<float> x, y;std::optional<int> s;std::string toString() {std::string command = "G0";if(x.has_value()) {command += std::format(" X{:.3f}", x.value());}if(y.has_value()) {command += std::format(" Y{:.3f}", y.value());}if(s.has_value()) {command += std::format(" S{:d}", s.value());}return command;}explicit operator std::string() const {std::string command = "G0";if(x.has_value()) {command += std::format(" X{:.3f}", x.value());}if(y.has_value()) {command += std::format(" Y{:.3f}", y.value());}if(s.has_value()) {command += std::format(" S{:d}", s.value());}return command;}
};struct G1 {std::optional<float> x, y;std::optional<int> s;std::string toString() {std::string command = "G1";if(x.has_value()) {command += std::format(" X{:.3f}", x.value());}if(y.has_value()) {command += std::format(" Y{:.3f}", y.value());}if(s.has_value()) {command += std::format(" S{:d}", s.value());}return command;}explicit operator std::string() const {std::string command = "G1";if(x.has_value()) {command += std::format(" X{:.3f}", x.value());}if(y.has_value()) {command += std::format(" Y{:.3f}", y.value());}if(s.has_value()) {command += std::format(" S{:d}", s.value());}return command;}
};

这个示例使用了C++中的结构体和可选值,使得G0和G1指令的参数可以选择性地存在。这种设计符合G代码的灵活性,因为在实际应用中,并非所有的参数都是必需的。

使用示例

下面是一个使用这些结构体的简单示例:

#include <optional>
#include <string>
#include <print>struct G0 {std::optional<float> x, y;std::optional<int> s;std::string toString() {std::string command = "G0";if(x.has_value()) {command += std::format(" X{:.3f}", x.value());}if(y.has_value()) {command += std::format(" Y{:.3f}", y.value());}if(s.has_value()) {command += std::format(" S{:d}", s.value());}return command;}explicit operator std::string() const {std::string command = "G0";if(x.has_value()) {command += std::format(" X{:.3f}", x.value());}if(y.has_value()) {command += std::format(" Y{:.3f}", y.value());}if(s.has_value()) {command += std::format(" S{:d}", s.value());}return command;}
};struct G1 {std::optional<float> x, y;std::optional<int> s;std::string toString() {std::string command = "G1";if(x.has_value()) {command += std::format(" X{:.3f}", x.value());}if(y.has_value()) {command += std::format(" Y{:.3f}", y.value());}if(s.has_value()) {command += std::format(" S{:d}", s.value());}return command;}explicit operator std::string() const {std::string command = "G1";if(x.has_value()) {command += std::format(" X{:.3f}", x.value());}if(y.has_value()) {command += std::format(" Y{:.3f}", y.value());}if(s.has_value()) {command += std::format(" S{:d}", s.value());}return command;}
};int main()
{std::println("{}", G0{0,0,0}.toString());std::println("{}", G1{6,std::nullopt,1000}.toString());return 0;
}

打印输出:

G0 X0.000 Y0.000 S0
G1 X6.000 S1000

这段代码展示了如何创建G0和G1指令对象,并输出它们的字符串表示形式。这样的设计使得在实际应用中可以方便地构建和修改G代码指令。

优化

如果需要生成更简短 GCode ,例如没有小数时,就不需要打印出精度信息。

使用以下代码

if (x.has_value()) {if (std::floor(x.value()) == x.value()) {// 如果浮点数没有小数点,不输出精度command += std::format(" X{:.0f}", x.value());} else {// 有小数点时输出指定精度command += std::format(" X{:.3f}", x.value());}
}

替换

if(x.has_value()) {command += std::format(" X{:.3f}", x.value());
}

完成 x 成员替换后,类似的 y 成员部分也需要替换。

这样替换后,最后输出

G0 X0 Y0 S0
G1 X6 S1000

总结

通过这篇博客,我们深入了解了G0和G1指令在激光雕刻中的重要性,并展示了一个简单的C++实现示例。这种设计可以在实际的激光雕刻应用中发挥巨大的作用,为工程师和编程人员提供了更灵活、更可读的代码。在未来的激光加工领域中,这样的设计模式可能会进一步发展,以满足更复杂的加工需求。下一篇文章将学习二值化图像转GCode,并实际应用刚刚学到的G0和G1知识。

这篇关于深入理解G0和G1指令:C++中的实现与激光雕刻应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666096

相关文章

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数