R语言添加p-value和显著性标记

2024-02-01 01:40
文章标签 语言 标记 value 显著性

本文主要是介绍R语言添加p-value和显著性标记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

R语言添加p-value和显著性标记,原文链接 https://mp.weixin.qq.com/s/gRw0krS3LY7c0QK9y47EJw

作者简介 Introduction

taoyan:伪码农,R语言爱好者,爱开源。

个人博客: https://ytlogos.github.io/

往期回顾

  • 一条命令轻松绘制CNS顶级配图-ggpubr
  • R语言聚类分析–cluster, factoextra

上篇文章中提了一下如何通过ggpubr包为ggplot图添加p-value以及显著性标记,本文将详细介绍。利用数据集ToothGrowth进行演示。

ggpubr安装和加载

# 直接从CRAN安装
install.packages("ggpubr", repo="http://cran.us.r-project.org")#先加载包
library(ggpubr)#加载数据集ToothGrowth
data("ToothGrowth")
head(ToothGrowth)

数据格式如下:

   len supp dose
1  4.2   VC  0.5
2 11.5   VC  0.5
3  7.3   VC  0.5
4  5.8   VC  0.5
5  6.4   VC  0.5
6 10.0   VC  0.5

比较方法

R中常用的比较方法主要有下面几种:

方法R函数描述
T-testt.test()比较两组(参数)
Wilcoxon testwilcox.test()比较两组(非参数)
ANOVAaov()或anova()比较多组(参数)
Kruskal-Walliskruskal.test()比较多组(非参数)

添加p-value

主要利用ggpubr包中的两个函数:

  • compare_means():可以进行一组或多组间的比较

  • stat_compare_mean():自动添加p-value、显著性标记到ggplot图中

compare_means()函数

该函数主要用用法如下:

compare_means(formula, data, method = “wilcox.test”, paired = FALSE,

group.by = NULL, ref.group = NULL, …)

注释:

formula:形如x~group,其中x是数值型变量,group是因子,可以是一个或者多个

data:数据集

method:比较的方法,默认为”wilcox.test”, 其他可选方法为:”t.test”、”anova”、”kruskal.test”

paired:是否要进行paired test(TRUE or FALSE)

group_by: 比较时是否要进行分组

ref.group: 是否需要指定参考组

stat_compare_means()函数

主要用法:

stat_compare_means(mapping = NULL, comparisons = NULL hide.ns = FALSE,

label = NULL, label.x = NULL, label.y = NULL, …)

注释:

mapping:由aes()创建的一套美学映射

comparisons:指定需要进行比较以及添加p-value、显著性标记的组

hide.ns:是否要显示显著性标记ns

label:显著性标记的类型,可选项为:p.signif(显著性标记)、p.format(显示p-value)

label.x、label.y:显著性标签调整

…:其他参数

比较独立的两组

compare_means(len~supp, data=ToothGrowth)

统计结果如下:

# A tibble: 1 x 8.y. group1 group2          p      p.adj p.format p.signif   method<chr>  <chr>  <chr>      <dbl>      <dbl>    <chr>    <chr>    <chr>
1   len     OJ     VC 0.06449067 0.06449067    0.064       ns Wilcoxon

结果解释:

.y:测试中使用的y变量

p:p-value

p.adj:调整后的p-value。默认为p.adjust.method=”holm”

p.format:四舍五入后的p-value

p.signif:显著性水平

method:用于统计检验的方法

绘制箱线图

# 绘制箱线图
p <- ggboxplot(ToothGrowth, x="supp", y="len", color = "supp",palette = "jco", add = "jitter") 
# 添加p-value, 默认是Wilcoxon test
p+stat_compare_means()

image

# 使用t-test统计检验方法
p+stat_compare_means(method = "t.test")

image

上述显著性标记可以通过label.x、label.y、hjust及vjust来调整
显著性标记可以通过aes()映射来更改:

aes(label=..p.format..)或aes(lebel=paste0(“p=”,..p.format..)):只显示p-value,不显示统计检验方法

aes(label=..p.signif..):仅显示显著性水平

aes(label=paste0(..method..,”\n”, “p=”,..p.format..)):p-value与显著性水平分行显示

举个栗子:

# 显示显著性水平,位置在1.5两组间和Y轴40位置
p+stat_compare_means(aes(label=..p.signif..), label.x = 1.5, label.y = 40)
# 也可以将标签指定为字符向量,不要映射,只需将p.signif两端的..去掉即可
p+stat_compare_means(label = "p.signif", label.x = 1.5, label.y = 40)

比较两个paired sample

# 比较两个paired sample
compare_means(len~supp, data=ToothGrowth, paired = TRUE)# 利用ggpaired()进行可视化
ggpaired(ToothGrowth, x="supp", y="len", color = "supp", line.color = "gray",line.size = 0.4, palette = "jco")+ stat_compare_means(paired = TRUE)

image

多组比较 Global test

anova进行多组比较

compare_means(len~dose, data=ToothGrowth, method = "anova")

统计结果如下:

# A tibble: 1 x 6.y.            p        p.adj p.format p.signif method<chr>        <dbl>        <dbl>    <chr>    <chr>  <chr>
1   len 9.532727e-16 9.532727e-16  9.5e-16     ****  Anova

可视化, default Kruskal-Wallis

ggboxplot(ToothGrowth, x="dose", y="len", color = "dose", palette = "jco")+stat_compare_means()

image

使用其他的方法,anova

#使用其他的方法, anova
ggboxplot(ToothGrowth, x="dose", y="len", color = "dose", palette = "jco")+stat_compare_means(method = "anova")

image

成对比较

默认进行两两比较

# Pairwise comparisons:如果分组变量中包含两个以上的水平,那么会自动进行pairwise test,默认方法为”wilcox.test”
compare_means(len~dose, data=ToothGrowth)

比较结果:

# A tibble: 3 x 8.y. group1 group2            p        p.adj p.format p.signif   method<chr>  <chr>  <chr>        <dbl>        <dbl>    <chr>    <chr>    <chr>
1   len    0.5      1 7.020855e-06 1.404171e-05  7.0e-06     **** Wilcoxon
2   len    0.5      2 8.406447e-08 2.521934e-07  8.4e-08     **** Wilcoxon
3   len      1      2 1.772382e-04 1.772382e-04  0.00018      *** Wilcoxon

可以指定比较哪些组

# 可以指定比较哪些组
my_comparisons <- list(c("0.5", "1"), c("1", "2"), c("0.5", "2"))
ggboxplot(ToothGrowth, x="dose", y="len", color = "dose",palette = "jco")+stat_compare_means(comparisons=my_comparisons)+ # Add pairwise comparisons p-value stat_compare_means(label.y = 50) # Add global p-value

image

可以通过修改参数label.y来更改标签的位置

ggboxplot(ToothGrowth, x="dose", y="len", color = "dose",palette = "jco")+
stat_compare_means(comparisons=my_comparisons, label.y = c(29, 35, 40))+ # Add pairwise comparisons p-value
stat_compare_means(label.y = 45) # Add global p-value

至于通过添加线条来连接比较的两组,这一功能已由包ggsignif实现

设定参考组

设定参考组

compare_means(len~dose, data=ToothGrowth, ref.group = "0.5",  #以dose=0.5组为参考组method = "t.test" )
# 可视化
ggboxplot(ToothGrowth, x="dose", y="len", color = "dose", palette = "jco")+stat_compare_means(method = "anova", label.y = 40)+ # Add global p-valuestat_compare_means(label = "p.signif", method = "t.test", ref.group = "0.5") # Pairwise comparison against reference

image

参考组也可以设置为.all.即所有的平均值

# 参考组也可以设置为.all.即所有的平均值
compare_means(len~dose, data=ToothGrowth, ref.group = ".all.", method = "t.test")
#可视化
ggboxplot(ToothGrowth, x="dose", y="len", color = "dose", palette = "jco")+stat_compare_means(method = "anova", label.y = 40)+# Add global p-valuestat_compare_means(label = "p.signif", method = "t.test",ref.group = ".all.")#Pairwise comparison against all

image

为什么有时需要将ref.group设置为.all

接下来利用survminer包中的数据集myeloma来讲解一下为什么有时候我们需要将ref.group设置为.all.

# 利用survminer包中的数据集myeloma来讲解一下为什么有时候我们需要将ref.group设置为.all.
install.packages("survminer")
library(survminer) #没安装的先安装再加载
data("myeloma")
head(myeloma)

我们将根据患者的分组来绘制DEPDC1基因的表达谱,看不同组之间是否存在显著性的差异,我们可以在7组之间进行比较,但是这样的话组间比较的组合就太多了,因此我们可以将7组中每一组与全部平均值进行比较,看看DEPDC1基因在不同的组中是否过表达还是低表达。

compare_means(DEPDC1~molecular_group, data = myeloma, ref.group = ".all.", method = "t.test")

比较结果如下:

# A tibble: 7 x 8.y. group1           group2            p        p.adj p.format p.signif<chr>  <chr>            <chr>        <dbl>        <dbl>    <chr>    <chr>
1 DEPDC1  .all.       Cyclin D-1 2.877529e-01 1.000000e+00     0.29       ns
2 DEPDC1  .all.       Cyclin D-2 4.244240e-01 1.000000e+00     0.42       ns
3 DEPDC1  .all.     Hyperdiploid 2.725486e-08 1.907840e-07  2.7e-08     ****
4 DEPDC1  .all. Low bone disease 5.258400e-06 3.155040e-05  5.3e-06     ****
5 DEPDC1  .all.              MAF 2.538126e-01 1.000000e+00     0.25       ns
6 DEPDC1  .all.            MMSET 5.784193e-01 1.000000e+00     0.58       ns
7 DEPDC1  .all.    Proliferation 2.393921e-05 1.196961e-04  2.4e-05     ****
# ... with 1 more variables: method <chr>

可视化DEPDC1基因表达谱

ggboxplot(myeloma, x="molecular_group", y="DEPDC1",color = "molecular_group", add = "jitter", legend="none")+rotate_x_text(angle = 45)+geom_hline(yintercept = mean(myeloma$DEPDC1), linetype=2)+# Add horizontal line at base meanstat_compare_means(method = "anova", label.y = 1600)+ # Add global annova p-valuestat_compare_means(label = "p.signif", method = "t.test", ref.group = ".all.")# Pairwise comparison against all

image

从图中可以看出,DEPDC1基因在Proliferation组中显著性地过表达,而在Hyperdiploid和Low bone disease显著性地低表达

我们也可以将非显著性标记ns去掉,只需要将参数hide.ns=TRUE

ggboxplot(myeloma, x="molecular_group", y="DEPDC1",color = "molecular_group", add = "jitter", legend="none")+rotate_x_text(angle = 45)+geom_hline(yintercept = mean(myeloma$DEPDC1), linetype=2)+# Add horizontal line at base meanstat_compare_means(method = "anova", label.y = 1600)+ # Add global annova p-valuestat_compare_means(label = "p.signif", method = "t.test", ref.group = ".all.", hide.ns = TRUE)# Pairwise comparison against all

分面多组同时比较

按另一个变量进行分组之后进行统计检验,比如按变量dose进行分组:

compare_means(len~supp, data=ToothGrowth, group.by = "dose")
#可视化
p <- ggboxplot(ToothGrowth, x="supp", y="len", color = "supp",palette = "jco", add = "jitter", facet.by = "dose", short.panel.labs = FALSE)#按dose进行分面
#label只绘制p-value
p+stat_compare_means(label = "p.format")

image

# label绘制显著性水平
p+stat_compare_means(label = "p.signif", label.x = 1.5)

image

将所有箱线图绘制在一个panel中

# 将所有箱线图绘制在一个panel中
p <- ggboxplot(ToothGrowth, x="dose", y="len", color = "supp",palette = "jco", add = "jitter")
p+stat_compare_means(aes(group=supp))
# 只显示p-value
p+stat_compare_means(aes(group=supp), label = "p.format")
# 显示显著性水平
p+stat_compare_means(aes(group=supp), label = "p.signif")

image

进行paired sample检验

compare_means(len~supp, data=ToothGrowth, group.by = "dose", paired = TRUE)
# 可视化
p <- ggpaired(ToothGrowth, x="supp", y="len", color = "supp",palette = "jco", line.color="gray", line.size=0.4, facet.by = "dose",short.panel.labs = FALSE) # 按dose分面
# 只显示p-value
p+stat_compare_means(label = "p.format", paired = TRUE)

image

其他图形

有误差棒的条形图

实际上我以前的文章里有纯粹用ggplot2实现

ggbarplot(ToothGrowth, x="dose", y="len", add = "mean_se")+stat_compare_means()+stat_compare_means(ref.group = "0.5", label = "p.signif", label.y = c(22, 29))

image

有误差棒的线图

ggline(ToothGrowth, x="dose", y="len", add = "mean_se")+stat_compare_means()+stat_compare_means(ref.group = "0.5", label = "p.signif", label.y = c(22, 29))

image

条形图(两个分组变量)

ggbarplot(ToothGrowth, x="dose", y="len", add = "mean_se", color = "supp",palette = "jco", position = position_dodge(0.8))+stat_compare_means(aes(group=supp), label = "p.signif", label.y = 29)

image

线图-两分组

# line, multiply pair group
ggline(ToothGrowth, x="dose", y="len", add = "mean_se", color = "supp",palette = "jco")+stat_compare_means(aes(group=supp), label = "p.signif", label.y = c(16, 25, 29))

image

环境信息

sessionInfo()

信息如下:

R version 3.4.3 (2017-11-30)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)Matrix products: defaultlocale:
[1] LC_COLLATE=Chinese (Simplified)_China.936 
[2] LC_CTYPE=Chinese (Simplified)_China.936   
[3] LC_MONETARY=Chinese (Simplified)_China.936
[4] LC_NUMERIC=C                              
[5] LC_TIME=Chinese (Simplified)_China.936    attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     other attached packages:
[1] survminer_0.4.2  bindrcpp_0.2     ggpubr_0.1.6.999 magrittr_1.5    
[5] ggplot2_2.2.1   loaded via a namespace (and not attached):[1] Rcpp_0.12.13        compiler_3.4.3      plyr_1.8.4         [4] bindr_0.1           tools_3.4.3         digest_0.6.15      [7] tibble_1.3.4        gtable_0.2.0        nlme_3.1-131       
[10] lattice_0.20-35     pkgconfig_2.0.1     rlang_0.1.4        
[13] Matrix_1.2-12       psych_1.7.8         ggsci_2.8          
[16] cmprsk_2.2-7        yaml_2.1.15         parallel_3.4.3     
[19] gridExtra_2.3       knitr_1.19          dplyr_0.7.4        
[22] stringr_1.2.0       survMisc_0.5.4      grid_3.4.3         
[25] tidyselect_0.2.3    data.table_1.10.4-3 glue_1.2.0         
[28] KMsurv_0.1-5        R6_2.2.2            km.ci_0.5-2        
[31] survival_2.41-3     foreign_0.8-69      tidyr_0.8.0        
[34] purrr_0.2.4         reshape2_1.4.2      splines_3.4.3      
[37] scales_0.5.0        assertthat_0.2.0    mnormt_1.5-5       
[40] xtable_1.8-2        colorspace_1.3-2    ggsignif_0.4.0     
[43] labeling_0.3        stringi_1.1.5       lazyeval_0.2.1     
[46] munsell_0.4.3       broom_0.4.3         zoo_1.8-1

猜你喜欢

  • 热文:1高分文章 2不可或缺的人 3图表规范
  • 一文读懂:1微生物组 2寄生虫益处 3进化树
  • 必备技能:1提问 2搜索 3Endnote
  • 文献阅读 1热心肠 2SemanticScholar 3geenmedical
  • 扩增子分析:1图表解读 2分析流程 3统计绘图 4功能预测
  • 科研经验:1云笔记 2云协作 3公众号
  • 系列教程:1Biostar 2微生物组 3宏基因组
  • 生物科普 1肠道细菌 2人体上的生命 3生命大跃进 4细胞的暗战 5人体奥秘

写在后面

为鼓励读者交流、快速解决科研困难,我们建立了“宏基因组”专业讨论群,目前己有国内外1200+ 一线科研人员加入。参与讨论,获得专业解答,欢迎分享此文至朋友圈,并扫码加主编好友带你入群,务必备注“姓名-单位-研究方向-职称/年级”。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍末解决群内讨论,问题不私聊,帮助同行。
image

学习扩增子、宏基因组科研思路和分析实战,关注“宏基因组”
image

点击阅读原文,跳转最新文章目录阅读
https://mp.weixin.qq.com/s/5jQspEvH5_4Xmart22gjMA

这篇关于R语言添加p-value和显著性标记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/665700

相关文章

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目: 题解: static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num & MASK1) == 0) {return

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

脏页的标记方式详解

脏页的标记方式 一、引言 在数据库系统中,脏页是指那些被修改过但还未写入磁盘的数据页。为了有效地管理这些脏页并确保数据的一致性,数据库需要对脏页进行标记。了解脏页的标记方式对于理解数据库的内部工作机制和优化性能至关重要。 二、脏页产生的过程 当数据库中的数据被修改时,这些修改首先会在内存中的缓冲池(Buffer Pool)中进行。例如,执行一条 UPDATE 语句修改了某一行数据,对应的缓

如何确定 Go 语言中 HTTP 连接池的最佳参数?

确定 Go 语言中 HTTP 连接池的最佳参数可以通过以下几种方式: 一、分析应用场景和需求 并发请求量: 确定应用程序在特定时间段内可能同时发起的 HTTP 请求数量。如果并发请求量很高,需要设置较大的连接池参数以满足需求。例如,对于一个高并发的 Web 服务,可能同时有数百个请求在处理,此时需要较大的连接池大小。可以通过压力测试工具模拟高并发场景,观察系统在不同并发请求下的性能表现,从而

C语言:柔性数组

数组定义 柔性数组 err int arr[0] = {0}; // ERROR 柔性数组 // 常见struct Test{int len;char arr[1024];} // 柔性数组struct Test{int len;char arr[0];}struct Test *t;t = malloc(sizeof(Test) + 11);strcpy(t->arr,

C语言指针入门 《C语言非常道》

C语言指针入门 《C语言非常道》 作为一个程序员,我接触 C 语言有十年了。有的朋友让我推荐 C 语言的参考书,我不敢乱推荐,尤其是国内作者写的书,往往七拼八凑,漏洞百出。 但是,李忠老师的《C语言非常道》值得一读。对了,李老师有个官网,网址是: 李忠老师官网 最棒的是,有配套的教学视频,可以试看。 试看点这里 接下来言归正传,讲解指针。以下内容很多都参考了李忠老师的《C语言非

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

C 语言的基本数据类型

C 语言的基本数据类型 注:本文面向 C 语言初学者,如果你是熟手,那就不用看了。 有人问我,char、short、int、long、float、double 等这些关键字到底是什么意思,如果说他们是数据类型的话,那么为啥有这么多数据类型呢? 如果写了一句: int a; 那么执行的时候在内存中会有什么变化呢? 橡皮泥大家都玩过吧,一般你买橡皮泥的时候,店家会赠送一些模板。 上