Yalmip学习笔记

2024-01-31 09:20
文章标签 学习 笔记 yalmip

本文主要是介绍Yalmip学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里写自定义目录标题

  • 基本用法
    • 变量定义
    • 关于大M
    • Bilevel programming

注:这篇文章主要是留给自己查漏补缺的,所以从来没有使用过yalmip的读者看着会觉得跳来跳去。

基本用法

建模开始前,使用yalmip('clear')清空Yalmip的内部数据库。
下面是一个完整的建模例子,包括定义决策变量、约束、目标函数,并求解。如果求解成功,那么输出最优解;否则,使用sol.info,yalmiperror(sol.problem)分析求解出错的原因。

% It's good practice to start by clearing YALMIPs internal database 
% Every time you call sdpvar etc, an internal database grows larger
yalmip('clear')% Define variables
x = sdpvar(10,1);% Define constraints 
Constraints = [sum(x) <= 10, x(1) == 0, 0.5 <= x(2) <= 1.5];
for i = 1 : 7Constraints = [Constraints, x(i) + x(i+1) <= x(i+2) + x(i+3)];
end% Define an objective
Objective = x'*x+norm(x,1);% Set some options for YALMIP and solver
options = sdpsettings('verbose',1,'solver','quadprog','quadprog.maxiter',100);% Solve the problem
sol = optimize(Constraints,Objective,options);% Analyze error flags
if sol.problem == 0% Extract and display valuesolution = value(x)
elsedisplay('Hmm, something went wrong!');sol.infoyalmiperror(sol.problem)
end

变量定义

P=sdpvar(n,n)默认会定义出一个对称的决策变量矩阵,如果不希望它是对称的,那么要补全第三个参数P=sdpvar(n,m,'full');
约束P>=0中,如果P=sdpvar(n,n),那么这个约束是正定矩阵的约束,如果你想要表达每个元素都是非负的,可以使用P(:)>=0;如果P=sdpvar(n,m,'full'),那么这个约束表示矩阵中每个元素都要是非负的。
yalmip不支持严格不等式约束,如果你一定要用的话,可以自定义一个tolerance,选择合适的tolerance是需要技巧的,设置太小了可能会被忽略达不到你想要的效果,设置太大了可能会切掉问题可行域中的一大块。

my_tolerance_for_strict = 1e-5;
F = [0 <= P(1,1) <= 2-my_tolerance_for_strict, P >= eye(n)*my_tolerance_for_strict];

Note though, many times strict inequalities are part of a homogenous problem, and the problem should be dehomogenized by adding a single constraint such as P>=eye(n) and replace all other constraints with non-strict. 这句话没看懂,什么是同质问题??

关于大M

引入大M会给混合整数规划求解器带来糟糕的数值问题,并松弛后的问题变弱了,这引发过多的分支并增加求解时间。
可以考虑tight bound of the big-M reformulations来缓解松弛后的问题过弱的痛点,具体地,可以为每个决策变量增加相应的上下界约束。
大M建模的目的是,生成一个模型使得它的松弛能够尽可能地接近原约束的convex hull,也就是,原问题可行域的最好的凸近似。
在Yalmip中,可以直接使用hull生成convex hull,
在这里插入图片描述
结合生成的hull, 你可以得到更强的混合整数规划模型

M1 = 50;
M2 = 50;
M3 = 50;
M4 = 50;
F = sum(d) == 1;
F = [F, A1*x - b1 <= M1*(1-d(1))];
F = [F, A2*x - b2 <= M2*(1-d(2))];
F = [F, A3*x - b3 <= M3*(1-d(3))];
F = [F, A4*x - b4 <= M4*(1-d(4))];
F = [F, hull(A1*x <= b1,A2*x <= b2,A3*x <= b3,A4*x <= b4)];

注意,这里的hull()命令会引入很多约束和变量。

Bilevel programming

https://yalmip.github.io/tutorial/bilevelprogramming/
yalmip里面有KKT函数接口;
对于双层规划问题,yalmip内部的求解器要求内层问题有二次凸性(convex quadratic), 外层问题不一定要有凸性。
求解外层问题时,不停地重复分支定界流程,由互补松弛定理所带来的等式约束随后加入求解。

这篇关于Yalmip学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/663271

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件