马哈鱼SQLFlow Lite的python版本

2024-01-31 06:28

本文主要是介绍马哈鱼SQLFlow Lite的python版本,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Gudu SQLFlow 是一款用来分析各种数据库的 SQL 语句和存储过程来获取复杂的数据血缘关系并进行可视化的工具。

Gudu SQLFlow Lite version for python 可以让 python 开发者把数据血缘分析和可视化能力快速集成到他们自己的 python 应用中。

Gudu SQLFlow Lite version for python 对非商业用途来说是免费的,它可以处理 10k 长度以下的任意复杂的 SQL 语句,包含对存储过程的支持。

Gudu SQLFlow Lite version for python 包含一个 Java 类库,通过分析复杂的 SQL 语句和存储过程来获取数据血缘关系,一个 python 文件,
通过 jpype 来调用 Java 类库中的 API, 一个 Javascript 库,用来可视化数据血缘关系。

Gudu SQLFlow Lite version for python 还可以自动从数据库中导出的 DDL 脚本中获取表和表,字段和字段间的约束关系,画出 ER Diagram.

自动可视化数据血缘关系

通过执行这条命令,

python dlineage.py /t oracle /f test.sql /graph

我们可以自动获得下面这个 Oracle SQL 语句包含的数据血缘关系

CREATE VIEW vsal 
AS SELECT a.deptno                  "Department", a.num_emp / b.total_count "Employees", a.sal_sum / b.total_sal   "Salary" FROM   (SELECT deptno, Count()  num_emp, SUM(sal) sal_sum FROM   scott.emp WHERE  city = 'NYC' GROUP  BY deptno) a, (SELECT Count()  total_count, SUM(sal) total_sal FROM   scott.emp WHERE  city = 'NYC') b 
;INSERT ALLWHEN ottl < 100000 THENINTO small_ordersVALUES(oid, ottl, sid, cid)WHEN ottl > 100000 and ottl < 200000 THENINTO medium_ordersVALUES(oid, ottl, sid, cid)WHEN ottl > 200000 THENinto large_ordersVALUES(oid, ottl, sid, cid)WHEN ottl > 290000 THENINTO special_orders
SELECT o.order_id oid, o.customer_id cid, o.order_total ottl,
o.sales_rep_id sid, c.credit_limit cl, c.cust_email cem
FROM orders o, customers c
WHERE o.customer_id = c.customer_id;

并可视化为:
在这里插入图片描述

Oracle PL/SQL Data Lineage

python dlineage.py /t oracle /f samlples/oracle_plsql.sql /graph

在这里插入图片描述

The source code of this sample Oracle PL/SQL.

Able to analyze dynamic SQL to get data lineage (Postgres stored procedure)

CREATE OR REPLACE FUNCTION t.mergemodel(_modelid integer)
RETURNS void
LANGUAGE plpgsql
AS $function$
BEGINEXECUTE format ('INSERT INTO InSelectionsSELECT * FROM AddInSelections_%s', modelid);END;
$function$

在这里插入图片描述

Nested CTE with star columns (Snowflake SQL sample)

python dlineage.py /t snowflake /f samlples/snowflake_nested_cte.sql /graph

在这里插入图片描述

The snowflake SQL source code of this sample.

分析 DDL, 自动画出 ER Diagram

通过执行这条命令,

python dlineage.py /t sqlserver /f samples/sqlserver_er.sql /graph /er

我们可以自动获得下面这个 SQL Server 数据库的 ER Diagram.
在这里插入图片描述

The DDL script of the above ER diagram is here.

Try your own SQL scripts

You may try more SQL scripts in your own computer without any internet connection by cloning this python data lineage repo

git clone https://github.com/sqlparser/python_data_lineage.git
  • No database connection is needed.
  • No internet connection is needed.

You only need a JDK and a python interpreter to run the Gudu SQLFlow lite version for python.

step 1 环境准备

  • 安装python3

    安装完python3后,还需要安装python依赖组件jpype。

  • 安装 java jdk, 要求jdk1.8及以上版本

    以ubuntu操作系统下安装为例:

    检查jdk版本:java -version

    如果未安装或版本小于1.8,则需要安装jdk1.8:

    sudo apt install openjdk-8-jdk

    如果报错:

    Unable to locate package openjdk-8-jdk

    则执行以下命令安装:

    sudo add-apt-repository ppa:openjdk-r/ppa
    apt-get update
    sudo apt install openjdk-8-jdk
    

step 2 打开web服务

切换到本项目widget目录,执行以下命令启动web服务:

python -m http.server 8000

浏览器内打开以下网址验证是否启动成功:http://localhost:8000/

注意:如果要修改8000端口,需要同时在dlineage.py里修改widget_server_url

step 3 执行python脚本

切换到本项目根目录,即dlineage.py所在目录,执行以下命令:

python dlineage.py /f test.sql /graph

此命令,会将test.sql进行血缘分析,并打开一个浏览器页面,图形化方式展示血缘分析结果。

dlineage.py 支持的命令参数说明:

  /f: 可选, sql文件./d: 可选, 包含sql文件的文件夹路径./j: 可选, 返回包含join关系的结果./s: 可选, 简单输出,忽略中间结果./topselectlist: 可选, 简单输出,包含最顶端的输出结果./withTemporaryTable: 可选, 简单输出,包含临时表./i: 可选, 与/s选项相同,但将保留SQL函数生成的结果集,此参数将与/s/topselectlist+keep SQL函数生成结果集具有相同的效果。/showResultSetTypes: 可选, 带有指定结果集类型的简单输出,用逗号分隔, 结果集类型有: array, struct, result_of, cte, insert_select, update_select, merge_update, merge_insert, output, update_set pivot_table, unpivot_table, alias, rs, function, case_when/if: 可选, 保留所有中间结果集,但删除 SQL 函数生成的结果集。/ic: 可选, 忽略输出中的坐标./lof: 必选, 将孤立列链接到第一个表./traceView: 可选,只输出源表和视图的名称,忽略所有中间数据./text: 可选, 如果只使用/s 选项,则在文本模式下输出列依赖项./json: 可选, 打印json格式输出./tableLineage [/csv /delimiter]: 可选, 输出表级血缘关系./csv: 可选, 输出csv格式的列一级的血缘关系./delimiter: 可选, 输出csv格式的分隔符./t: 必选, 指定数据库类型. 支持 access,bigquery,couchbase,dax,db2,greenplum, gaussdb, hana,hive,impala,informix,mdx,mssql,sqlserver,mysql,netezza,odbc,openedge,oracle,postgresql,postgres,redshift,snowflake,sybase,teradata,soql,vertica the default value is oracle/env: 可选, 指定一个 metadata.json 来获取数据库元数据信息./transform: 可选, 输出关系转换码./coor: 可选, 输出关系转换坐标,但不输出代码./defaultDatabase: 可选, 指定默认database./defaultSchema: 可选, 指定默认schema./showImplicitSchema: 可选, 显示间接schema./showConstant: 可选, 显示常量./treatArgumentsInCountFunctionAsDirectDataflow: 可选,将 count 函数中的参数视为直接数据流./filterRelationTypes: 可选, 过滤关系类型,支持 fdd,fdr,join,call,er,如果有多个关系类型用英文半角逗号分隔./graph: 可选, 打开一个浏览器页面,图形化方式展示血缘分析结果/er: 可选, 打开一个浏览器页面,图形化方式展示ER图

从各种数据库中导出元数据

SQLFlow ingester 可以中数据库中导出元数据,交给 Gudu SQLFlow 进行数据血缘分析。

SQLFlow ingester 的使用文档

Trobule shooting

1.脚本执行报错:SystemError: java.lang.ClassNotFoundException: org.jpype.classloader.DynamicClassLoader
Traceback (most recent call last):
File "/home/grq/python_data_lineage/dlineage.py", line 231, in <module>
call_dataFlowAnalyzer(args)
File "/home/grq/python_data_lineage/dlineage.py", line 20, in call_dataFlowAnalyzer
jpype.startJVM(jvm, "-ea", jar)
File "/usr/lib/python3/dist-packages/jpype/_core.py", line 224, in startJVM
_jpype.startup(jvmpath, tuple(args),
SystemError: java.lang.ClassNotFoundException: org.jpype.classloader.DynamicClassLoader

这个问题在ubuntu系统预装的python3 jpype环境中常见,原因是在/usr/lib/python3/dist-packages/目录下缺少org.jpype.jar。
需要将org.jpype.jar 复制到/usr/lib/python3/dist-packages/目录下。

cp /usr/share/java/org.jpype.jar /usr/lib/python3/dist-packages/org.jpype.jar

这篇关于马哈鱼SQLFlow Lite的python版本的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/662838

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

Tomcat版本与Java版本的关系及说明

《Tomcat版本与Java版本的关系及说明》:本文主要介绍Tomcat版本与Java版本的关系及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Tomcat版本与Java版本的关系Tomcat历史版本对应的Java版本Tomcat支持哪些版本的pythonJ

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专