马哈鱼SQLFlow Lite的python版本

2024-01-31 06:28

本文主要是介绍马哈鱼SQLFlow Lite的python版本,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Gudu SQLFlow 是一款用来分析各种数据库的 SQL 语句和存储过程来获取复杂的数据血缘关系并进行可视化的工具。

Gudu SQLFlow Lite version for python 可以让 python 开发者把数据血缘分析和可视化能力快速集成到他们自己的 python 应用中。

Gudu SQLFlow Lite version for python 对非商业用途来说是免费的,它可以处理 10k 长度以下的任意复杂的 SQL 语句,包含对存储过程的支持。

Gudu SQLFlow Lite version for python 包含一个 Java 类库,通过分析复杂的 SQL 语句和存储过程来获取数据血缘关系,一个 python 文件,
通过 jpype 来调用 Java 类库中的 API, 一个 Javascript 库,用来可视化数据血缘关系。

Gudu SQLFlow Lite version for python 还可以自动从数据库中导出的 DDL 脚本中获取表和表,字段和字段间的约束关系,画出 ER Diagram.

自动可视化数据血缘关系

通过执行这条命令,

python dlineage.py /t oracle /f test.sql /graph

我们可以自动获得下面这个 Oracle SQL 语句包含的数据血缘关系

CREATE VIEW vsal 
AS SELECT a.deptno                  "Department", a.num_emp / b.total_count "Employees", a.sal_sum / b.total_sal   "Salary" FROM   (SELECT deptno, Count()  num_emp, SUM(sal) sal_sum FROM   scott.emp WHERE  city = 'NYC' GROUP  BY deptno) a, (SELECT Count()  total_count, SUM(sal) total_sal FROM   scott.emp WHERE  city = 'NYC') b 
;INSERT ALLWHEN ottl < 100000 THENINTO small_ordersVALUES(oid, ottl, sid, cid)WHEN ottl > 100000 and ottl < 200000 THENINTO medium_ordersVALUES(oid, ottl, sid, cid)WHEN ottl > 200000 THENinto large_ordersVALUES(oid, ottl, sid, cid)WHEN ottl > 290000 THENINTO special_orders
SELECT o.order_id oid, o.customer_id cid, o.order_total ottl,
o.sales_rep_id sid, c.credit_limit cl, c.cust_email cem
FROM orders o, customers c
WHERE o.customer_id = c.customer_id;

并可视化为:
在这里插入图片描述

Oracle PL/SQL Data Lineage

python dlineage.py /t oracle /f samlples/oracle_plsql.sql /graph

在这里插入图片描述

The source code of this sample Oracle PL/SQL.

Able to analyze dynamic SQL to get data lineage (Postgres stored procedure)

CREATE OR REPLACE FUNCTION t.mergemodel(_modelid integer)
RETURNS void
LANGUAGE plpgsql
AS $function$
BEGINEXECUTE format ('INSERT INTO InSelectionsSELECT * FROM AddInSelections_%s', modelid);END;
$function$

在这里插入图片描述

Nested CTE with star columns (Snowflake SQL sample)

python dlineage.py /t snowflake /f samlples/snowflake_nested_cte.sql /graph

在这里插入图片描述

The snowflake SQL source code of this sample.

分析 DDL, 自动画出 ER Diagram

通过执行这条命令,

python dlineage.py /t sqlserver /f samples/sqlserver_er.sql /graph /er

我们可以自动获得下面这个 SQL Server 数据库的 ER Diagram.
在这里插入图片描述

The DDL script of the above ER diagram is here.

Try your own SQL scripts

You may try more SQL scripts in your own computer without any internet connection by cloning this python data lineage repo

git clone https://github.com/sqlparser/python_data_lineage.git
  • No database connection is needed.
  • No internet connection is needed.

You only need a JDK and a python interpreter to run the Gudu SQLFlow lite version for python.

step 1 环境准备

  • 安装python3

    安装完python3后,还需要安装python依赖组件jpype。

  • 安装 java jdk, 要求jdk1.8及以上版本

    以ubuntu操作系统下安装为例:

    检查jdk版本:java -version

    如果未安装或版本小于1.8,则需要安装jdk1.8:

    sudo apt install openjdk-8-jdk

    如果报错:

    Unable to locate package openjdk-8-jdk

    则执行以下命令安装:

    sudo add-apt-repository ppa:openjdk-r/ppa
    apt-get update
    sudo apt install openjdk-8-jdk
    

step 2 打开web服务

切换到本项目widget目录,执行以下命令启动web服务:

python -m http.server 8000

浏览器内打开以下网址验证是否启动成功:http://localhost:8000/

注意:如果要修改8000端口,需要同时在dlineage.py里修改widget_server_url

step 3 执行python脚本

切换到本项目根目录,即dlineage.py所在目录,执行以下命令:

python dlineage.py /f test.sql /graph

此命令,会将test.sql进行血缘分析,并打开一个浏览器页面,图形化方式展示血缘分析结果。

dlineage.py 支持的命令参数说明:

  /f: 可选, sql文件./d: 可选, 包含sql文件的文件夹路径./j: 可选, 返回包含join关系的结果./s: 可选, 简单输出,忽略中间结果./topselectlist: 可选, 简单输出,包含最顶端的输出结果./withTemporaryTable: 可选, 简单输出,包含临时表./i: 可选, 与/s选项相同,但将保留SQL函数生成的结果集,此参数将与/s/topselectlist+keep SQL函数生成结果集具有相同的效果。/showResultSetTypes: 可选, 带有指定结果集类型的简单输出,用逗号分隔, 结果集类型有: array, struct, result_of, cte, insert_select, update_select, merge_update, merge_insert, output, update_set pivot_table, unpivot_table, alias, rs, function, case_when/if: 可选, 保留所有中间结果集,但删除 SQL 函数生成的结果集。/ic: 可选, 忽略输出中的坐标./lof: 必选, 将孤立列链接到第一个表./traceView: 可选,只输出源表和视图的名称,忽略所有中间数据./text: 可选, 如果只使用/s 选项,则在文本模式下输出列依赖项./json: 可选, 打印json格式输出./tableLineage [/csv /delimiter]: 可选, 输出表级血缘关系./csv: 可选, 输出csv格式的列一级的血缘关系./delimiter: 可选, 输出csv格式的分隔符./t: 必选, 指定数据库类型. 支持 access,bigquery,couchbase,dax,db2,greenplum, gaussdb, hana,hive,impala,informix,mdx,mssql,sqlserver,mysql,netezza,odbc,openedge,oracle,postgresql,postgres,redshift,snowflake,sybase,teradata,soql,vertica the default value is oracle/env: 可选, 指定一个 metadata.json 来获取数据库元数据信息./transform: 可选, 输出关系转换码./coor: 可选, 输出关系转换坐标,但不输出代码./defaultDatabase: 可选, 指定默认database./defaultSchema: 可选, 指定默认schema./showImplicitSchema: 可选, 显示间接schema./showConstant: 可选, 显示常量./treatArgumentsInCountFunctionAsDirectDataflow: 可选,将 count 函数中的参数视为直接数据流./filterRelationTypes: 可选, 过滤关系类型,支持 fdd,fdr,join,call,er,如果有多个关系类型用英文半角逗号分隔./graph: 可选, 打开一个浏览器页面,图形化方式展示血缘分析结果/er: 可选, 打开一个浏览器页面,图形化方式展示ER图

从各种数据库中导出元数据

SQLFlow ingester 可以中数据库中导出元数据,交给 Gudu SQLFlow 进行数据血缘分析。

SQLFlow ingester 的使用文档

Trobule shooting

1.脚本执行报错:SystemError: java.lang.ClassNotFoundException: org.jpype.classloader.DynamicClassLoader
Traceback (most recent call last):
File "/home/grq/python_data_lineage/dlineage.py", line 231, in <module>
call_dataFlowAnalyzer(args)
File "/home/grq/python_data_lineage/dlineage.py", line 20, in call_dataFlowAnalyzer
jpype.startJVM(jvm, "-ea", jar)
File "/usr/lib/python3/dist-packages/jpype/_core.py", line 224, in startJVM
_jpype.startup(jvmpath, tuple(args),
SystemError: java.lang.ClassNotFoundException: org.jpype.classloader.DynamicClassLoader

这个问题在ubuntu系统预装的python3 jpype环境中常见,原因是在/usr/lib/python3/dist-packages/目录下缺少org.jpype.jar。
需要将org.jpype.jar 复制到/usr/lib/python3/dist-packages/目录下。

cp /usr/share/java/org.jpype.jar /usr/lib/python3/dist-packages/org.jpype.jar

这篇关于马哈鱼SQLFlow Lite的python版本的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/662838

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(